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Binary rewriting, what
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Binary rewriting, why

- Hardening

- Optimization

- Profiling

- Translation
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- Optimization
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Uses:
Stack canary protection
Address Space Layout Randomization
Address/Memory sanitization
Sandboxing

Examples:
Stackguard
RevARM
QASAN



Binary rewriting, why

- Hardening

- Optimization

- Profiling

- Translation
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Uses:
Cache misses optimizations
Run-time patching (no restart)

Examples:
DynInst
Frida



Binary rewriting, why

- Hardening

- Optimization

- Profiling

- Translation
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Uses:
Performance measurements
Memory leak detection
Fuzzing coverage information
Taint analysis

Examples:
Valgrind
AFL-QEMU



Binary rewriting, why

- Hardening

- Optimization

- Profiling

- Translation
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Uses:
Syscall translation for a foreign OS
Emulation of foreign architectures
Obfuscation/deobfuscation (packing)

Examples:
QEMU
movfuscator



Binary rewriting, how
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Binary rewriting techniques are split in two big categories:

- Dynamic rewriting
- Static rewriting



Static rewriting
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Rewriter process

Dynamic rewriting
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Static analysis          vs       Dynamic analysis
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Static analysis is like judging raw pasta from 
its look, color, weight, texture, personality, 

and, most importantly, bounciness.

Hard to do reliably, but possible. Requires 
expert eye, a fine palate, and unconditional 

love for pasta. 

Dynamic analysis is like trying out pasta 
while it’s boiling, to check that taste, salt 

and overall al-dente-ness are perfect.

Even a first timer can spot problems with 
dynamic pasta analysis.



Static vs dynamic

13

What Static analysis Dynamic analysis

Code vs Data Problem No problem

Code coverage Kinda problem No problem

Self-modifying code Big Problem No problem

Just-In-Time code Big Problem No problem

Time requirements No problem Big problem

What are we doing This one :( Not this one



Static rewriting
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Static rewriting
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Executable
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This is called in-place instrumentation.

Advantages:
- Lowest possible overhead

Disadvantages:
- Platform-dependent
- Unflexible
- All control flow AND references broken

- Need to rely on complex static 
analysis and instruction patching to 
readjust the layout



Static rewriting
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This is trampoline based instrumentation.

Advantages:
- Easy and fast to implement
- Does not break references/control flow

Disadvantages:
- Slow, two jumps inserted at each 

instrumentation point
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Static rewriting
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This process is called IR lifting 
(Intermediate Representation)

Advantages:
- Very flexible, can support many 

architectures at the same time

Disadvantages:
- Hard to implement
- Translation can be inaccurate and lead 

to slowdown
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Symbolization

sym′bol·i·za′tion (sĭm-bə-lĭ-zā′shən) n.  
“The process of producing reassemblable 
assembly from a binary. 

In other words,
Symbolization = disassembly + substituting 
references with assembly labels
The result can be directly fed to an assembler to 
produce a binary with the same functionality as 
the original one. That’s why it’s called 
reassemblable assembly.
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Symbolization example
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Myfunc:
movz x0, 3
bl 0x400 
cbz x0, 4
mov x0, 1
ret
mov x0, 0
ret

Symbolized_Myfunc:
movz x0, 3
bl .LC400 
cbz x0, .LC802
mov x0, 1
ret

.LC802:
mov x0, 0
ret



Static rewriting
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This is called in-place instrumentation.

Advantages:
- Lowest possible overhead

Disadvantages:
- Platform-dependent
- Unflexible
- All control flow AND references broken

- Need to rely on complex static 
analysis and instruction patching 
to readjust the layout



Distinguishing between code and data

21

Myfunc:
movz x0, 3
bl 0x400 
cbz x0, 4
mov x0, 1
ret
mov x0, 0
ret

Symbolized_Myfunc:
movz x0, 3
bl .LC400 
cbz x0, .LC802
mov x0, 1
ret

.LC802:
mov x0, 0
ret



A not-so-trivial example
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Myfunc:
cbz x0, 4
mov x0, 1
movz x0, 0x400
br x0 
ret



Distinguishing between code and data

A very hard problem, like many others in life 23
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Retrowrite
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Retrowrite

Solves the data/reference distinction by focunsing only on PIE 
(position-independent executables). 

Originally developed for x86_64, we extend it to aarch64

Not a simple porting job! ARM has many specific quirks that introduced many 
challenges 
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Fixed Size Instruction Set
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Fixed Size Instruction Set
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ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jump tables
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- Symbolizing large jump tables



Global variables

Each instruction on ARM is 4 bytes large. This is why it is called a fixed-size 
instruction set. 

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot 
include an address in a single instruction.
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Global variables
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movz eax, <pointer>



Global variables

Each instruction on ARM is 4 bytes large. This is why it is called a fixed-size 
instruction set. 

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot 
include an address in a single instruction.
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movz eax, <pointer>



Global variables

Each instruction on ARM is 4 bytes large. This is why it is called a fixed-size 
instruction set. 

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot 
include an address in a single instruction.
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There are two alternative ways to use addresses on ARM:

- Using literal pools
- Using multiple instructions in a process called pointer construction or 

pointer building

movz eax, <pointer>



Using addresses on aarch64

- Literal pools

- Pointer constructions
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Using addresses on aarch64

- Literal pools

- Pointer constructions
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Literal pools are special memory regions 
in which the compiler stores absolute 
addresses that can be then stored into a 
register through a standard memory 
load.

ldr x0, =<pointer>

With the above instruction, we will store 
the address <pointer> in register x0.
The address will be stored as a constant 
(a literal) in a manually specified 
memory region. 



Using addresses on aarch64

- Literal pools

- Pointer constructions
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This means arithmetically building 
pointers through a set of computations.

adrp x0, <pointer>
add x0, x0, :lo12:<pointer>

The first adrp will load the base page in 
x0, and then the internal page offset 
(the lowest significant 12 bits of 
<pointer>) is added to x0



Using addresses on aarch64

- Literal pools

- Pointer constructions
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The problem:

> Pointer constructions require 2 instructions (or more). Literal pools require a single one, but it’s 
a memory load, so it is slower than pointer constructions in general.

> Compilers almost always use pointer constructions. 

> Pointer constructions need to be detected, as pointers need to be symbolized (substituted with 
an assembly label)

> Pointers are very common, and compilers absolutely love optimizations. They will mix and 
match pointer constructions until they are very hard to detect



Literal pools vs pointer constructions
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We implemented both and ran a benchmark to compare times. We decided 
to use pointer constructions for our final implementation.



Literal pools vs pointer constructions
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We implemented both and ran a benchmark to compare times. We decided 
to use pointer constructions for our final implementation.
> The big problem left was the detection of pointer constructions



First approach:
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First approach: Pattern Matching

42
Static analysis becomes hard very fast



Static analysis
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Static analysis is like pasta: you are never done with it.



First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:
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adrp x0, 0x8000
add x0, x0, 0x128
. . .
. . .
adrp x0, 0x8000
sub x2, x2, x3
add x0, x0, 0x128



First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:
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adrp x0, 0x8000
add x0, x0, 0x128
. . .
. . .
adrp x0, 0x8000
sub x2, x2, x3
add x0, x0, 0x128

But way too many edgecases popped up, mostly out of compiler optimizations



First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:
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adrp x0, 0x8000
add x0, x0, 0x128
. . .
. . .
adrp x0, 0x8000
sub x2, x2, x3
add x0, x0, 0x128

But way too many edgecases popped up, mostly out of compiler optimizations

adrp x0, 0x8000
str x0, [sp, -0x8]
div x1, x2, x4
br  x3
ldr x0, [sp, -0x8]
add x0, 0x128

adrp x0, 0x8000
add x0, x0, x1
and x0, x0, x2
add x0, 0x128



First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:
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adrp x0, 0x8000
add x0, x0, 0x128
. . .
. . .
adrp x0, 0x8000
sub x2, x2, x3
add x0, x0, 0x128

But way too many edgecases popped up, mostly out of compiler optimizations

adrp x0, 0x8000
str x0, [sp, -0x8]
div x1, x2, x4
br  x3
ldr x0, [sp, -0x8]
add x0, 0x128

adrp x0, 0x8000
add x0, x0, x1
and x0, x0, x2
add x0, 0x128

> Static analysis becomes hard very fast



Second approach:
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Second approach: section pruning
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Cutting corners - apparently in academia it’s a very 
praised practice and it’s called “research”



Second approach: section pruning

We try to fix the adrp only, ignoring all the 
other instructions used to build the pointer 
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adrp x0, 0x3000
add x0, x0, 0x128



Second approach: section pruning

We try to fix the adrp only, ignoring all the 
other instructions used to build the pointer 
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Retrowrite does not change sections other 
than the .text, as instrumentation is 
relevant only to the code of the binary, not 
the data.

adrp x0, 0x3000
add x0, x0, 0x128

https://app.diagrams.net/?page-id=eoRoQL8I7Rw_oCIxxabi&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF


Second approach: section pruning

We prune until we have only one possible 
section left 
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adrp x0, 0x3000
add x0, x0, 0x128

https://app.diagrams.net/?page-id=eoRoQL8I7Rw_oCIxxabi&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF


Second approach: section pruning

We prune until we have only one possible 
section left
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adrp x0, 0x3000
add x0, x0, 0x128

We identify the regions which lie in 
the +- 1 KB range from the adrp

https://app.diagrams.net/?page-id=TBnzRIzEiMWwVF4yaAW9&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF


Second approach: section pruning

We prune until we have only one possible 
section left 
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adrp x0, 0x3000
add x0, x0, 0x128

We identify the regions which lie in 
the +- 1 KB range from the adrp

If there is only one section, then the 
symbolization is easy:

adrp x0, (.bss + 0x2000)
add x0, x0, 0x128

https://app.diagrams.net/?page-id=TBnzRIzEiMWwVF4yaAW9&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF


Second approach: section pruning

We prune until we have only one possible 
section left 
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> sections other than .text are not modified

> offsets inside a single sections will stay 
the same no matter the memory layout

adrp x0, (.bss + 0x2000)
add x0, x0, 0x128

https://app.diagrams.net/?page-id=5CiY69vG9iLgzNXEWsv8&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF


Second approach: section pruning

Sometimes this is not possible, as 
multiple sections overlap the 1 KB range. 
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https://app.diagrams.net/?page-id=eoRoQL8I7Rw_oCIxxabi&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF


Second approach: section pruning

Sometimes this is not possible, as 
multiple sections overlap the 1 KB range. 
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adrp x0, 0x7ff0
add x0, x0, 0x128

https://app.diagrams.net/?page-id=JcSrYTqsZSolRAEt2svS&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF


Second approach: section pruning

Sometimes this is not possible, as 
multiple sections overlap the 1 KB range. 
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adrp x0, 0x7ff0
add x0, x0, 0x128

> In this case, we fall back to old 
pattern matching

https://app.diagrams.net/?page-id=JcSrYTqsZSolRAEt2svS&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF


Symbolizing pointer constructions

Using a combination of the first approach (pattern matching) and the second 
(section pruning), we can rewrite binaries as large as the gcc benchmark of SPEC 
CPU2017 (10 MB binary), correctly rewriting all pointer constructions.

We also rewrote the entire coreutils software corpus with retrowrite and verified 
that the resulting binaries still pass all tests of the coreutils testing framework
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ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jump tables



Jump table detection

Contrary to x86, jump tables in ARM can be hard to detect

Jump tables on ARM are stored compressed, since instead of storing absolute 
addresses, they store offsets from the base case. 

This makes a jump table indistinguishable from random memory, as sometime a 
every case is only 1 or 2 bytes large.
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Jump table detection
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x86_64 ARM



Jump table detection
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x86_64 ARM



An example jump table

64

adrp x0, <table_page_addr>    
add  x0, x0, <table_page_off>
ldrb w1, [x0, w1, uxtw]
adr  x0, <base_case_addr>
add  x0, x0, w1, sxtb 2
br   x0, <base_case_addr>
. . .

// pointer construction
// to jump table
// load the offset in reg w1
// pointer to the first case of the switch
// add the (offset << 2) to the base case
// jump there :)



An example jump table
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adrp x0, <table_page_addr>    
add  x0, x0, <table_page_off>
ldrb w1, [x0, w1, uxtw]
adr  x0, <base_case_addr>
add  x0, x0, w1, sxtb 2
br   x0, <base_case_addr>
. . .

// pointer construction
// to jump table
// load the offset in reg w1
// pointer to the first case of the switch
// add the (offset << 2) to the base case
// jump there :)

> How to detect that it’s a jump table?

We thought about pattern matching again, but we chose a more robust 
solution this time



Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from 
each indirect jump to check for offset-based branches:
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Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from 
each indirect jump to check for offset-based branches:
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cmp  w1, 16    
b.hi <default_case>   
adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 2
br   x0, <base_case_addr>
. . .



Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from 
each indirect jump to check for offset-based branches:
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cmp  w1, 16    
b.hi <default_case>   
adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 2
br   x0, <base_case_addr>
. . .

// x0 = x0 + (w1 /< 2)
// x0



Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from 
each indirect jump to check for offset-based branches:
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cmp  w1, 16    
b.hi <default_case>   
adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 2
br   x0, <base_case_addr>
. . .

// x0 = 0x418 + (*(x0 + w1) /< 2)
// x0 = 0x418 + (w1 /< 2)
// x0 = x0 + (w1 /< 2)
// x0



Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from 
each indirect jump to check for offset-based branches:
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cmp  w1, 16    
b.hi <default_case>   
adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 2
br   x0
. . .

// x0 = 0x418 + (*(0x8128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + 0x128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + w1) /< 2)
// x0 = 0x418 + (w1 /< 2)
// x0 = x0 + (w1 /< 2)
// x0



Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from 
each indirect jump to check for offset-based branches:
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cmp  w1, 16    
b.hi <default_case>   
adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 2
br   x0
. . .

// Exit if w1 higher than 16
// x0 = 0x418 + (*(0x8128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + 0x128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + w1) /< 2)
// x0 = 0x418 + (w1 /< 2)
// x0 = x0 + (w1 /< 2)
// x0



Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from 
each indirect jump to check for offset-based branches:
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cmp  w1, 16    
b.hi <default_case>   
adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 2
br   x0
. . .

// Exit if w1 higher than 16
// x0 = 0x418 + (*(0x8128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + 0x128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + w1) /< 2)
// x0 = 0x418 + (w1 /< 2)
// x0 = x0 + (w1 /< 2)
// x0

Results:
Base case: 0x418 Case register: w1
Jump table addr: 0x8128 Number of cases: 16



Jump table detection with backwards slicing

The small symbolic emulator was an interesting project on its own, ended up with 
the following features:

- Over 30 ARM instructions supported
- Support for interleaved instructions
- Support for nested jump tables
- Support for control-flow-interleaved jump tables

Dongsoo Ha, Wenhui Jin, and Heekuck Oh. “REPICA: Rewriting Position Independent Code of ARM”
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ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jump tables



Approaches we tried

1. Make a brand new jumptables with more space available for each case
a. Feasible, but wasted space and required changes in the jump table code

2. Change the memory layout to make more space for the existing jump table
a. Hard to implement and would have broken the “not instrumenting data” 

3. Tradeoff some of the jump table precision by “enlarging” it
a. Easy to implement and required only minor changes in the code

75



Symbolizing jump tables
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adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1
br   x0, <base_case_addr>
. . .

.LCd568:
.byte 8

.LCd569:
.byte 12

.LCd56a:
.byte 12

.LCd56b:
.byte 20

.LCd56c:
.byte 12

.LCd56d:
.byte 20

.LCd56e:
.byte 40



Symbolizing jump tables
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adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 2
br   x0, <base_case_addr>
. . .

.LCd568:
.byte 2

.LCd569:
.byte 3

.LCd56a:
.byte 3

.LCd56b:
.byte 5

.LCd56c:
.byte 4

.LCd56d:
.byte 5

.LCd56e:
.byte 10



Symbolizing jump tables
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adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 2
br   x0, <base_case_addr>
. . .

.LCd568:
.byte (.LCa3a0-.LCa350)/4

.LCd569:
.byte (.LCa3a0-.LCa350)/4

.LCd56a:
.byte (.LCa3bc-.LCa350)/4

.LCd56b:
.byte (.LCa3bc-.LCa350)/4

.LCd56c:
.byte (.LCa384-.LCa350)/4

.LCd56d:
.byte (.LCa384-.LCa350)/4

.LCd56e:
.byte (.LCa350-.LCa350)/4



Symbolizing jump tables
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adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 4
br   x0, <base_case_addr>
. . .

.LCd568:
.byte (.LCa3a0-.LCa350)/16

.LCd569:
.byte (.LCa3a0-.LCa350)/16

.LCd56a:
.byte (.LCa3bc-.LCa350)/16

.LCd56b:
.byte (.LCa3bc-.LCa350)/16

.LCd56c:
.byte (.LCa384-.LCa350)/16

.LCd56d:
.byte (.LCa384-.LCa350)/16

.LCd56e:
.byte (.LCa350-.LCa350)/16



Jump table enlargement
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adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1
br   x0, <base_case_addr>
. . .

0x8000: 0
0x8001: 8
0x8002: 16
0x8003: 24
0x8004: 32
0x8005: 40

https://app.diagrams.net/?scale=auto#G1bv9EhFW5CldK1UE-inK00HROh6VXUdRHUrfL08lhlg4
https://app.diagrams.net/?page-id=9N5noylN3y2ohQDQ_9yT&scale=auto#G1RQYmyos1kFLnXsndn8WnYhYmkPyRcB2q


Jump table enlargement
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adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 2
br   x0, <base_case_addr>
. . .

0x8000: 0
0x8001: 2
0x8002: 4
0x8003: 6
0x8004: 8
0x8005: 10

https://app.diagrams.net/?scale=auto#G1bv9EhFW5CldK1UE-inK00HROh6VXUdRHUrfL08lhlg4
https://app.diagrams.net/?page-id=5Wi42Nhb_if9Eo0Gs4q4&scale=auto#G1RQYmyos1kFLnXsndn8WnYhYmkPyRcB2q


Jump table enlargement
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adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 3
br   x0, <base_case_addr>
. . .

0x8000: 0
0x8001: 1
0x8002: 2
0x8003: 3
0x8004: 4
0x8005: 5

https://app.diagrams.net/?scale=auto#G1bv9EhFW5CldK1UE-inK00HROh6VXUdRHUrfL08lhlg4
https://app.diagrams.net/?page-id=dAam34zCdQO4U88y1mJ-&scale=auto#G1RQYmyos1kFLnXsndn8WnYhYmkPyRcB2q


Jump table enlargement

83

adrp x0, 0x8000    
add  x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr  x0, 0x418
add  x0, x0, w1, sxtb 4
br   x0, <base_case_addr>
. . .

0x8000: 0
0x8001: 1
0x8002: 2
0x8003: 3
0x8004: 4
0x8005: 5

https://app.diagrams.net/?scale=auto#G1bv9EhFW5CldK1UE-inK00HROh6VXUdRHUrfL08lhlg4
https://app.diagrams.net/?page-id=EVOPavmH_ENEfxYOagIr&scale=auto#G1RQYmyos1kFLnXsndn8WnYhYmkPyRcB2q


Results



SPEC CPU2017 benchmarks

Memory sanitization instrumentation (quite heavy)

30% slower than source-based memory sanitization

Orders of magnitude faster than dynamic rewriting
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Key improvements over previous works
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- First zero-overhead aarch64 rewriter that supports enlarged jump-tables

- First attempt at symbolizing ARM

- Fast static memory sanitization instrumentation pass

- Focus on modularity and ease of extensibility.
The codebase is around ~2k LOC of python, and we have already numerous issues on github 
by people extending it with their own instrumentation



Limitations
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- Does not work on non-C binaries (no C++, java, handwritten assembly)

- Works only on binaries produced by well-behaved compilers (gcc, clang)
- No self-modifying code
- No inline assembly!
- No obfuscated code/packed payloads/malware hiding techniques

- Other common limitations of static analysis:
- Disassembly is generally undecidable
- If there are no symbols in a binary, forced to rely on imperfect heuristics for things like 

function detection



Future Work
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- More programming languages support, like C++ exceptions

- Support for instrumenting kernel modules: there are subtle differences for 
symbolizing kernel modules, but this could open up the way to efficiently 
fuzz Android vendor modules and other embedded firmwares

- Support for more operatings systems: right now there is only support for 
Linux ELF executables, but targeting Windows and OSX would be interesting

- Thanks to the modular design of RetroWrite, interesting additional 
instrumentation passes can be implemented such as shadow stack, 
control-flow authentication with PAC codes, coverage guidance for fuzzing, 
and more. 
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Thanks for listening!



Appendix
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BASAN
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Binary ASAN

95

ASAN = Address SANitizer

Developed by Google, as a compiler pass for LLVM to provide memory safety in C 
based languages

Works by hooking malloc, free and friends and inserting a check before every 
memory load/store done by the binary

BASAN = Binary Address SANitizer

It’s the name of our instrumentation pass. The functionality is very similar to the 
original ASAN, with differences from the fact that BASAN is applied to an already 
compiled binary, without using its source code



96

Register Savings

We can use static analysis to determine which registers can be safely used inside 
a function without overwriting important values to avoid wasting time pushing 
them on the stack and popping them back later
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Register Savings
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Comparison to trampolines



END
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ELF



A quick recap of retrowrite
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binary
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Profit
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ASan
KCov
Fuzzing hooks
etc ...ELF
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Sushant dinesh + Mathias Payer original retrowrite tool for x86-64

Matteo Rizzo

Me + Jean-Michel retrowrite for ARM 64 (aarch64)

kretrowrite for x86-64 kernel modules

A small history lesson
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Sushant dinesh + Mathias Payer original retrowrite tool for x86-64

Matteo Rizzo

Me + Jean-Michel retrowrite for ARM 64 (aarch64)

kretrowrite for x86-64 kernel modules

A small history lesson

www.github.com/hexhive/retrowrite official public repo (old, but will get updated)

www.github.com/hexhive/ku_retrowrite kernel version + ARM branch in development

http://www.github.com/hexhive/retrowrite
http://www.github.com/hexhive/ku_retrowrite


Disclaimer
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While aarch64 it’s an architecture we all love and cheer (well, at least 
before you actually start working with it), I realize that not everyone is 
comfortable reading ARM asm.  

No worries, I’ve got you covered, any time you see the following symbol:

I will google-translate the ARM assembly back to our beloved x86! 
You’re welcome.



The problems I’m facing
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●

People is stupid

firefoxsucks



The problems I’m facing
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● Detecting global variable access is hard

● Detecting switch statements (jump tables) is hard 

Why are those necessary?
For the reassembly after the Instrumentation step to work correctly. 
In short words, instrumentation is going to insert arbitrary assembly in the middle of the binary, 
to do that I need to relocate stuff correctly, and to do that I need to know where stuff is in the 
first place.



Part 1: Global variable access
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Global variable access on x86
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mov rax, [0x7fffff008]



Global variable access on ARM
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adrp x0, 0x7fffff000
ldr x1, [x0, #8]



Global variable access on ARM
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adrp x0, 0x7fffff000
ldr x1, [x0, #8]

mov rax, 0x7fffff000
add rax, 8
mov rbx, [rax]



Global variable access on ARM
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adrp x0, 0x7fffff000
ldr x1, [x0, #8]

mov rax, 0x7fffff000
add rax, 8
mov rbx, [rax]

This is because ARM has fixed 4-byte instructions, so you cannot fit a 64 bit 
address in them, you need to compute it using adrp (with which you can only 
select a 4KB page).



Global variable access on ARM
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adrp x0, 0x7fffff000
ldr x1, [x0, #8]

mov rax, 0x7fffff000
add rax, 8
mov rbx, [rax]

This is because ARM has fixed 4-byte instructions, so you cannot fit a 64 bit 
address in them, you need to compute it using adrp (with which you can only 
select a 4KB page).

This is a problem ‘cause the global address can (and will) be built in 
much more convoluted ways than the example above



Pattern matching
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Pattern matching
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adrp x0, <page>
...
ldr x1, [x0 + <off>]

Detected



Pattern matching

117WEIZZ: Automatic Grey-Box Fuzzing for Structured Binary Formats

adrp x0, <page>
...
ldr x1, [x0 + <off>]

adrp x0, <page>
...
add x0, x0, <off>
...
ldr x1, [x0]

Detected Detected



Pattern matching
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adrp x0, <page>
...
ldr x1, [x0 + <off>]

adrp x0, <page>
...
add x0, x0, <off>
...
ldr x1, [x0]

adrp x0, <page>
...
ldr x1, [memory]
...
add x0, x0, x1
ldr x2, [x0]

Detected Detected NOT detected



Pattern matching
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adrp x0, <page>
...
ldr x1, [x0 + <off>]

adrp x0, <page>
...
add x0, x0, <off>
...
ldr x1, [x0]

adrp x0, <page>
...
ldr x1, [memory]
...
add x0, x0, x1
ldr x2, [x0]

Detected Detected NOT detected

The first two cases cover 99% of global accesses, especially with no compiler 
optimization.



Pattern matching
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- I stop doing this and instead use a full-blown emulator, such as Unicorn or 
QEMU

- This is not great, it will slow down progress by at least 1-2 weeks as I’m not familiar with any 
of them. 

- I continue to improve the pattern matching, adding more and more edge 
cases

- This is not well going in the long run, as even detecting the “simple” cases shown before was 
not easy at all, and the complexity of the code is exploding pretty quickly. At some point, this 
will become just me implementing my own emulator



Part 2: Switches!
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Switches on ARM
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adr x1, <first case addr>
adrp x19, <page>
ldrb w0, [x19, <off>]
add x0, x1, w0, sxtb 2
br x0



Switches on ARM
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adr x1, <first case addr>
adrp x19, <page>
ldrb w0, [x19, <off>]
add x0, x1, w0, sxtb 2
br x0

mov rbx, <first case addr>
mov rax, word [<page>+<off>]
sal rax, 2
add rbx, rax
jmp rbx



Switches on ARM
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adr x1, <first case addr>
adrp x19, <page>
ldrb w0, [x19, <off>]
add x0, x1, w0, sxtb 2
br x0

mov rbx, <first case addr>
mov rax, word [<page>+<off>]
sal rax, 2
add rbx, rax
jmp rbx



Switches on ARM
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adr x1, <first case addr>
adrp x19, <page>
ldrb w0, [x19, <off>]
add x0, x1, w0, sxtb 2
br x0

mov rbx, <first case addr>
mov rax, word [<page>+<off>]
sal rax, 2
add rbx, rax
jmp rbx

The observant reader will notice that this is 
just a particular case of global variable 
access. 
I need to symbolize *all* possible cases of the 
switch as while instrumenting the offsets will 
change for sure!



Yes but what about other disassemblers?
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- Radare2:
- Correctly detects jump tables on x86, but not on ARM. They use their own implementation of 

code emulation called ESIL.
- IDA:

- Correctly detects jump tables on both x86 and ARM. I have no idea on what they do use. 
- Ghidra:

- Correctly detects jump tables on both x86 and ARM. I am almost sure they use their 
own symbolic execution, but I didn’t spend that much time digging the java 
code.



Yes but what about other disassemblers?
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- Radare2:
- Correctly detects jump tables on x86, but not on ARM. They use their own implementation of 

code emulation called ESIL.
- IDA:

- Correctly detects jump tables on both x86 and ARM. I have no idea on what they do use. 
- Ghidra:

- Correctly detects jump tables on both x86 and ARM. I am almost sure they use their 
own symbolic execution, but I didn’t spend that much time digging the java 
code.



Conclusions?
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- More pattern matching

- Code emulation

- Symbolic execution



A quick recap of retrowrite
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