
ARM Wrestling:
Efficient binary rewriting for aarch64
Luca Di Bartolomeo

Advisor: Mathias Payer
Supervisor: Kenny Paterson

1

2

Credits

Luca Di Bartolomeo
Author

“Do you guys think this meme is too
offensive for a master thesis?”

Prof. Mathias Payer
Advisor (EPFL)

“Don’t get attached to what you write,
as I’ll make you rewrite it four times…”

Prof. Kenny Paterson
Ext. Supervisor (ETH)

“You, shall not, RC4!”

Binary rewriting, what

ELF

3

Binary rewriting, why

- Hardening

- Optimization

- Profiling

- Translation

4

Binary rewriting, why

- Hardening

- Optimization

- Profiling

- Translation

5

Uses:
Stack canary protection
Address Space Layout Randomization
Address/Memory sanitization
Sandboxing

Examples:
Stackguard
RevARM
QASAN

Binary rewriting, why

- Hardening

- Optimization

- Profiling

- Translation

6

Uses:
Cache misses optimizations
Run-time patching (no restart)

Examples:
DynInst
Frida

Binary rewriting, why

- Hardening

- Optimization

- Profiling

- Translation

7

Uses:
Performance measurements
Memory leak detection
Fuzzing coverage information
Taint analysis

Examples:
Valgrind
AFL-QEMU

Binary rewriting, why

- Hardening

- Optimization

- Profiling

- Translation

8

Uses:
Syscall translation for a foreign OS
Emulation of foreign architectures
Obfuscation/deobfuscation (packing)

Examples:
QEMU
movfuscator

Binary rewriting, how

9

Binary rewriting techniques are split in two big categories:

- Dynamic rewriting
- Static rewriting

Static rewriting

10

Executable

code

data

Executable

code

data

INSTRUMENTATION

code
INSTRUMENTATION

code

INSTRUMENTATION

Rewriter process

Dynamic rewriting

11

Executable

code

data

Executable

code

data

ptrace

Static analysis vs Dynamic analysis

12

Static analysis is like judging raw pasta from
its look, color, weight, texture, personality,

and, most importantly, bounciness.

Hard to do reliably, but possible. Requires
expert eye, a fine palate, and unconditional

love for pasta.

Dynamic analysis is like trying out pasta
while it’s boiling, to check that taste, salt

and overall al-dente-ness are perfect.

Even a first timer can spot problems with
dynamic pasta analysis.

Static vs dynamic

13

What Static analysis Dynamic analysis

Code vs Data Problem No problem

Code coverage Kinda problem No problem

Self-modifying code Big Problem No problem

Just-In-Time code Big Problem No problem

Time requirements No problem Big problem

What are we doing This one :(Not this one

Static rewriting

14

Executable

Executable

code

data

Static rewriting

15

Executable

code

data

INSTRUMENTATION

code
INSTRUMENTATION

code

INSTRUMENTATION

This is called in-place instrumentation.

Advantages:
- Lowest possible overhead

Disadvantages:
- Platform-dependent
- Unflexible
- All control flow AND references broken

- Need to rely on complex static
analysis and instruction patching to
readjust the layout

Static rewriting

16

Executable

code

data

INSTRUMENTATION

This is trampoline based instrumentation.

Advantages:
- Easy and fast to implement
- Does not break references/control flow

Disadvantages:
- Slow, two jumps inserted at each

instrumentation point

code

code

= unconditional jump

Static rewriting

17

This process is called IR lifting
(Intermediate Representation)

Advantages:
- Very flexible, can support many

architectures at the same time

Disadvantages:
- Hard to implement
- Translation can be inaccurate and lead

to slowdown

Executable

code

data

IR

data

Executable

Instrumented
code

data

Symbolization

sym′bol·i·za′tion (sĭm-bə-lĭ-zā′shən) n.
“The process of producing reassemblable
assembly from a binary.

In other words,
Symbolization = disassembly + substituting
references with assembly labels
The result can be directly fed to an assembler to
produce a binary with the same functionality as
the original one. That’s why it’s called
reassemblable assembly.

18

Executable

code

data

symbolized
asm compiler

Executable

Instrumented
code

data

Symbolization example

19

Myfunc:
movz x0, 3
bl 0x400
cbz x0, 4
mov x0, 1
ret
mov x0, 0
ret

Symbolized_Myfunc:
movz x0, 3
bl .LC400
cbz x0, .LC802
mov x0, 1
ret

.LC802:
mov x0, 0
ret

Static rewriting

20

Executable

code

data

INSTRUMENTATION

code
INSTRUMENTATION

code

INSTRUMENTATION

This is called in-place instrumentation.

Advantages:
- Lowest possible overhead

Disadvantages:
- Platform-dependent
- Unflexible
- All control flow AND references broken

- Need to rely on complex static
analysis and instruction patching
to readjust the layout

Distinguishing between code and data

21

Myfunc:
movz x0, 3
bl 0x400
cbz x0, 4
mov x0, 1
ret
mov x0, 0
ret

Symbolized_Myfunc:
movz x0, 3
bl .LC400
cbz x0, .LC802
mov x0, 1
ret

.LC802:
mov x0, 0
ret

A not-so-trivial example

22

Myfunc:
cbz x0, 4
mov x0, 1
movz x0, 0x400
br x0
ret

Distinguishing between code and data

A very hard problem, like many others in life 23

24

Retrowrite

25

Retrowrite

Solves the data/reference distinction by focunsing only on PIE
(position-independent executables).

Originally developed for x86_64, we extend it to aarch64

Not a simple porting job! ARM has many specific quirks that introduced many
challenges

26

Fixed Size Instruction Set

27

Fixed Size Instruction Set

28

ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jump tables

ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jump tables

Global variables

Each instruction on ARM is 4 bytes large. This is why it is called a fixed-size
instruction set.

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot
include an address in a single instruction.

31

Global variables

Each instruction on ARM is 4 bytes large. This is why it is called a fixed-size
instruction set.

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot
include an address in a single instruction.

32

movz eax, <pointer>

Global variables

Each instruction on ARM is 4 bytes large. This is why it is called a fixed-size
instruction set.

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot
include an address in a single instruction.

33

movz eax, <pointer>

Global variables

Each instruction on ARM is 4 bytes large. This is why it is called a fixed-size
instruction set.

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot
include an address in a single instruction.

34

There are two alternative ways to use addresses on ARM:

- Using literal pools
- Using multiple instructions in a process called pointer construction or

pointer building

movz eax, <pointer>

Using addresses on aarch64

- Literal pools

- Pointer constructions

35

Using addresses on aarch64

- Literal pools

- Pointer constructions

36

Literal pools are special memory regions
in which the compiler stores absolute
addresses that can be then stored into a
register through a standard memory
load.

ldr x0, =<pointer>

With the above instruction, we will store
the address <pointer> in register x0.
The address will be stored as a constant
(a literal) in a manually specified
memory region.

Using addresses on aarch64

- Literal pools

- Pointer constructions

37

This means arithmetically building
pointers through a set of computations.

adrp x0, <pointer>
add x0, x0, :lo12:<pointer>

The first adrp will load the base page in
x0, and then the internal page offset
(the lowest significant 12 bits of
<pointer>) is added to x0

Using addresses on aarch64

- Literal pools

- Pointer constructions

38

The problem:

> Pointer constructions require 2 instructions (or more). Literal pools require a single one, but it’s
a memory load, so it is slower than pointer constructions in general.

> Compilers almost always use pointer constructions.

> Pointer constructions need to be detected, as pointers need to be symbolized (substituted with
an assembly label)

> Pointers are very common, and compilers absolutely love optimizations. They will mix and
match pointer constructions until they are very hard to detect

Literal pools vs pointer constructions

39

We implemented both and ran a benchmark to compare times. We decided
to use pointer constructions for our final implementation.

Literal pools vs pointer constructions

40

We implemented both and ran a benchmark to compare times. We decided
to use pointer constructions for our final implementation.
> The big problem left was the detection of pointer constructions

First approach:

41

First approach: Pattern Matching

42
Static analysis becomes hard very fast

Static analysis

43
Static analysis is like pasta: you are never done with it.

First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:

44

adrp x0, 0x8000
add x0, x0, 0x128
. . .
. . .
adrp x0, 0x8000
sub x2, x2, x3
add x0, x0, 0x128

First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:

45

adrp x0, 0x8000
add x0, x0, 0x128
. . .
. . .
adrp x0, 0x8000
sub x2, x2, x3
add x0, x0, 0x128

But way too many edgecases popped up, mostly out of compiler optimizations

First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:

46

adrp x0, 0x8000
add x0, x0, 0x128
. . .
. . .
adrp x0, 0x8000
sub x2, x2, x3
add x0, x0, 0x128

But way too many edgecases popped up, mostly out of compiler optimizations

adrp x0, 0x8000
str x0, [sp, -0x8]
div x1, x2, x4
br x3
ldr x0, [sp, -0x8]
add x0, 0x128

adrp x0, 0x8000
add x0, x0, x1
and x0, x0, x2
add x0, 0x128

First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:

47

adrp x0, 0x8000
add x0, x0, 0x128
. . .
. . .
adrp x0, 0x8000
sub x2, x2, x3
add x0, x0, 0x128

But way too many edgecases popped up, mostly out of compiler optimizations

adrp x0, 0x8000
str x0, [sp, -0x8]
div x1, x2, x4
br x3
ldr x0, [sp, -0x8]
add x0, 0x128

adrp x0, 0x8000
add x0, x0, x1
and x0, x0, x2
add x0, 0x128

> Static analysis becomes hard very fast

Second approach:

48

Second approach: section pruning

49

Cutting corners - apparently in academia it’s a very
praised practice and it’s called “research”

Second approach: section pruning

We try to fix the adrp only, ignoring all the
other instructions used to build the pointer

50

adrp x0, 0x3000
add x0, x0, 0x128

Second approach: section pruning

We try to fix the adrp only, ignoring all the
other instructions used to build the pointer

51

Retrowrite does not change sections other
than the .text, as instrumentation is
relevant only to the code of the binary, not
the data.

adrp x0, 0x3000
add x0, x0, 0x128

https://app.diagrams.net/?page-id=eoRoQL8I7Rw_oCIxxabi&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF

Second approach: section pruning

We prune until we have only one possible
section left

52

adrp x0, 0x3000
add x0, x0, 0x128

https://app.diagrams.net/?page-id=eoRoQL8I7Rw_oCIxxabi&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF

Second approach: section pruning

We prune until we have only one possible
section left

53

adrp x0, 0x3000
add x0, x0, 0x128

We identify the regions which lie in
the +- 1 KB range from the adrp

https://app.diagrams.net/?page-id=TBnzRIzEiMWwVF4yaAW9&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF

Second approach: section pruning

We prune until we have only one possible
section left

54

adrp x0, 0x3000
add x0, x0, 0x128

We identify the regions which lie in
the +- 1 KB range from the adrp

If there is only one section, then the
symbolization is easy:

adrp x0, (.bss + 0x2000)
add x0, x0, 0x128

https://app.diagrams.net/?page-id=TBnzRIzEiMWwVF4yaAW9&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF

Second approach: section pruning

We prune until we have only one possible
section left

55

> sections other than .text are not modified

> offsets inside a single sections will stay
the same no matter the memory layout

adrp x0, (.bss + 0x2000)
add x0, x0, 0x128

https://app.diagrams.net/?page-id=5CiY69vG9iLgzNXEWsv8&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF

Second approach: section pruning

Sometimes this is not possible, as
multiple sections overlap the 1 KB range.

56

https://app.diagrams.net/?page-id=eoRoQL8I7Rw_oCIxxabi&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF

Second approach: section pruning

Sometimes this is not possible, as
multiple sections overlap the 1 KB range.

57

adrp x0, 0x7ff0
add x0, x0, 0x128

https://app.diagrams.net/?page-id=JcSrYTqsZSolRAEt2svS&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF

Second approach: section pruning

Sometimes this is not possible, as
multiple sections overlap the 1 KB range.

58

adrp x0, 0x7ff0
add x0, x0, 0x128

> In this case, we fall back to old
pattern matching

https://app.diagrams.net/?page-id=JcSrYTqsZSolRAEt2svS&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF

Symbolizing pointer constructions

Using a combination of the first approach (pattern matching) and the second
(section pruning), we can rewrite binaries as large as the gcc benchmark of SPEC
CPU2017 (10 MB binary), correctly rewriting all pointer constructions.

We also rewrote the entire coreutils software corpus with retrowrite and verified
that the resulting binaries still pass all tests of the coreutils testing framework

59

ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jump tables

Jump table detection

Contrary to x86, jump tables in ARM can be hard to detect

Jump tables on ARM are stored compressed, since instead of storing absolute
addresses, they store offsets from the base case.

This makes a jump table indistinguishable from random memory, as sometime a
every case is only 1 or 2 bytes large.

61

Jump table detection

62
x86_64 ARM

Jump table detection

63
x86_64 ARM

An example jump table

64

adrp x0, <table_page_addr>
add x0, x0, <table_page_off>
ldrb w1, [x0, w1, uxtw]
adr x0, <base_case_addr>
add x0, x0, w1, sxtb 2
br x0, <base_case_addr>
. . .

// pointer construction
// to jump table
// load the offset in reg w1
// pointer to the first case of the switch
// add the (offset << 2) to the base case
// jump there :)

An example jump table

65

adrp x0, <table_page_addr>
add x0, x0, <table_page_off>
ldrb w1, [x0, w1, uxtw]
adr x0, <base_case_addr>
add x0, x0, w1, sxtb 2
br x0, <base_case_addr>
. . .

// pointer construction
// to jump table
// load the offset in reg w1
// pointer to the first case of the switch
// add the (offset << 2) to the base case
// jump there :)

> How to detect that it’s a jump table?

We thought about pattern matching again, but we chose a more robust
solution this time

Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

66

Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

67

cmp w1, 16
b.hi <default_case>
adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 2
br x0, <base_case_addr>
. . .

Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

68

cmp w1, 16
b.hi <default_case>
adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 2
br x0, <base_case_addr>
. . .

// x0 = x0 + (w1 /< 2)
// x0

Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

69

cmp w1, 16
b.hi <default_case>
adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 2
br x0, <base_case_addr>
. . .

// x0 = 0x418 + (*(x0 + w1) /< 2)
// x0 = 0x418 + (w1 /< 2)
// x0 = x0 + (w1 /< 2)
// x0

Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

70

cmp w1, 16
b.hi <default_case>
adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 2
br x0
. . .

// x0 = 0x418 + (*(0x8128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + 0x128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + w1) /< 2)
// x0 = 0x418 + (w1 /< 2)
// x0 = x0 + (w1 /< 2)
// x0

Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

71

cmp w1, 16
b.hi <default_case>
adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 2
br x0
. . .

// Exit if w1 higher than 16
// x0 = 0x418 + (*(0x8128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + 0x128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + w1) /< 2)
// x0 = 0x418 + (w1 /< 2)
// x0 = x0 + (w1 /< 2)
// x0

Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

72

cmp w1, 16
b.hi <default_case>
adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 2
br x0
. . .

// Exit if w1 higher than 16
// x0 = 0x418 + (*(0x8128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + 0x128 + w1) /< 2)
// x0 = 0x418 + (*(x0 + w1) /< 2)
// x0 = 0x418 + (w1 /< 2)
// x0 = x0 + (w1 /< 2)
// x0

Results:
Base case: 0x418 Case register: w1
Jump table addr: 0x8128 Number of cases: 16

Jump table detection with backwards slicing

The small symbolic emulator was an interesting project on its own, ended up with
the following features:

- Over 30 ARM instructions supported
- Support for interleaved instructions
- Support for nested jump tables
- Support for control-flow-interleaved jump tables

Dongsoo Ha, Wenhui Jin, and Heekuck Oh. “REPICA: Rewriting Position Independent Code of ARM”

73

ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jump tables

Approaches we tried

1. Make a brand new jumptables with more space available for each case
a. Feasible, but wasted space and required changes in the jump table code

2. Change the memory layout to make more space for the existing jump table
a. Hard to implement and would have broken the “not instrumenting data”

3. Tradeoff some of the jump table precision by “enlarging” it
a. Easy to implement and required only minor changes in the code

75

Symbolizing jump tables

76

adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1
br x0, <base_case_addr>
. . .

.LCd568:
.byte 8

.LCd569:
.byte 12

.LCd56a:
.byte 12

.LCd56b:
.byte 20

.LCd56c:
.byte 12

.LCd56d:
.byte 20

.LCd56e:
.byte 40

Symbolizing jump tables

77

adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 2
br x0, <base_case_addr>
. . .

.LCd568:
.byte 2

.LCd569:
.byte 3

.LCd56a:
.byte 3

.LCd56b:
.byte 5

.LCd56c:
.byte 4

.LCd56d:
.byte 5

.LCd56e:
.byte 10

Symbolizing jump tables

78

adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 2
br x0, <base_case_addr>
. . .

.LCd568:
.byte (.LCa3a0-.LCa350)/4

.LCd569:
.byte (.LCa3a0-.LCa350)/4

.LCd56a:
.byte (.LCa3bc-.LCa350)/4

.LCd56b:
.byte (.LCa3bc-.LCa350)/4

.LCd56c:
.byte (.LCa384-.LCa350)/4

.LCd56d:
.byte (.LCa384-.LCa350)/4

.LCd56e:
.byte (.LCa350-.LCa350)/4

Symbolizing jump tables

79

adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 4
br x0, <base_case_addr>
. . .

.LCd568:
.byte (.LCa3a0-.LCa350)/16

.LCd569:
.byte (.LCa3a0-.LCa350)/16

.LCd56a:
.byte (.LCa3bc-.LCa350)/16

.LCd56b:
.byte (.LCa3bc-.LCa350)/16

.LCd56c:
.byte (.LCa384-.LCa350)/16

.LCd56d:
.byte (.LCa384-.LCa350)/16

.LCd56e:
.byte (.LCa350-.LCa350)/16

Jump table enlargement

80

adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1
br x0, <base_case_addr>
. . .

0x8000: 0
0x8001: 8
0x8002: 16
0x8003: 24
0x8004: 32
0x8005: 40

https://app.diagrams.net/?scale=auto#G1bv9EhFW5CldK1UE-inK00HROh6VXUdRHUrfL08lhlg4
https://app.diagrams.net/?page-id=9N5noylN3y2ohQDQ_9yT&scale=auto#G1RQYmyos1kFLnXsndn8WnYhYmkPyRcB2q

Jump table enlargement

81

adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 2
br x0, <base_case_addr>
. . .

0x8000: 0
0x8001: 2
0x8002: 4
0x8003: 6
0x8004: 8
0x8005: 10

https://app.diagrams.net/?scale=auto#G1bv9EhFW5CldK1UE-inK00HROh6VXUdRHUrfL08lhlg4
https://app.diagrams.net/?page-id=5Wi42Nhb_if9Eo0Gs4q4&scale=auto#G1RQYmyos1kFLnXsndn8WnYhYmkPyRcB2q

Jump table enlargement

82

adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 3
br x0, <base_case_addr>
. . .

0x8000: 0
0x8001: 1
0x8002: 2
0x8003: 3
0x8004: 4
0x8005: 5

https://app.diagrams.net/?scale=auto#G1bv9EhFW5CldK1UE-inK00HROh6VXUdRHUrfL08lhlg4
https://app.diagrams.net/?page-id=dAam34zCdQO4U88y1mJ-&scale=auto#G1RQYmyos1kFLnXsndn8WnYhYmkPyRcB2q

Jump table enlargement

83

adrp x0, 0x8000
add x0, x0, 0x128
ldrb w1, [x0, w1, uxtw]
adr x0, 0x418
add x0, x0, w1, sxtb 4
br x0, <base_case_addr>
. . .

0x8000: 0
0x8001: 1
0x8002: 2
0x8003: 3
0x8004: 4
0x8005: 5

https://app.diagrams.net/?scale=auto#G1bv9EhFW5CldK1UE-inK00HROh6VXUdRHUrfL08lhlg4
https://app.diagrams.net/?page-id=EVOPavmH_ENEfxYOagIr&scale=auto#G1RQYmyos1kFLnXsndn8WnYhYmkPyRcB2q

Results

SPEC CPU2017 benchmarks

Memory sanitization instrumentation (quite heavy)

30% slower than source-based memory sanitization

Orders of magnitude faster than dynamic rewriting

85

86

Key improvements over previous works

87

- First zero-overhead aarch64 rewriter that supports enlarged jump-tables

- First attempt at symbolizing ARM

- Fast static memory sanitization instrumentation pass

- Focus on modularity and ease of extensibility.
The codebase is around ~2k LOC of python, and we have already numerous issues on github
by people extending it with their own instrumentation

Limitations

88

- Does not work on non-C binaries (no C++, java, handwritten assembly)

- Works only on binaries produced by well-behaved compilers (gcc, clang)
- No self-modifying code
- No inline assembly!
- No obfuscated code/packed payloads/malware hiding techniques

- Other common limitations of static analysis:
- Disassembly is generally undecidable
- If there are no symbols in a binary, forced to rely on imperfect heuristics for things like

function detection

Future Work

89

- More programming languages support, like C++ exceptions

- Support for instrumenting kernel modules: there are subtle differences for
symbolizing kernel modules, but this could open up the way to efficiently
fuzz Android vendor modules and other embedded firmwares

- Support for more operatings systems: right now there is only support for
Linux ELF executables, but targeting Windows and OSX would be interesting

- Thanks to the modular design of RetroWrite, interesting additional
instrumentation passes can be implemented such as shadow stack,
control-flow authentication with PAC codes, coverage guidance for fuzzing,
and more.

Special thanks to...

90

giuliagl
chiccosala

linus14
picorana

neon
lamberto_lamberti

frattack
neopt

lightblue
ak

gannimo
filippog

tulymyhero
gallileo

matteo_chen
dariusk

andreafioraldi
null

kennyog
robin_jadoul

frigol
francesco_iadevaia

jean_michel
flagbot

p0lyglots

In no particular order, the people in this list had a major impact on my journey
Thanks :D

Thanks for listening!

Appendix

92

93

BASAN

94

Binary ASAN

95

ASAN = Address SANitizer

Developed by Google, as a compiler pass for LLVM to provide memory safety in C
based languages

Works by hooking malloc, free and friends and inserting a check before every
memory load/store done by the binary

BASAN = Binary Address SANitizer

It’s the name of our instrumentation pass. The functionality is very similar to the
original ASAN, with differences from the fact that BASAN is applied to an already
compiled binary, without using its source code

96

Register Savings

We can use static analysis to determine which registers can be safely used inside
a function without overwriting important values to avoid wasting time pushing
them on the stack and popping them back later

97

Register Savings

98

Comparison to trampolines

END

99

100

slides

slides

ARM assembly

A quick recap of Retrowrite

Closed-source
binary

Symbolization Labeled assembly

101

ELF

Memory
Sanitization

Fuzzing
Coverage

Control Flow
Integrity Instrumented

assembly

A quick recap of retrowrite

closed
source
binary

Symbolization Instrumentation ???
Profit

102

ELF

A quick recap of retrowrite

closed
source
binary

Symbolization Instrumentation ???
Profit

103

ASan
KCov
Fuzzing hooks
etc ...ELF

104

Sushant dinesh + Mathias Payer original retrowrite tool for x86-64

Matteo Rizzo

Me + Jean-Michel retrowrite for ARM 64 (aarch64)

kretrowrite for x86-64 kernel modules

A small history lesson

105

Sushant dinesh + Mathias Payer original retrowrite tool for x86-64

Matteo Rizzo

Me + Jean-Michel retrowrite for ARM 64 (aarch64)

kretrowrite for x86-64 kernel modules

A small history lesson

www.github.com/hexhive/retrowrite official public repo (old, but will get updated)

www.github.com/hexhive/ku_retrowrite kernel version + ARM branch in development

http://www.github.com/hexhive/retrowrite
http://www.github.com/hexhive/ku_retrowrite

Disclaimer

106

While aarch64 it’s an architecture we all love and cheer (well, at least
before you actually start working with it), I realize that not everyone is
comfortable reading ARM asm.

No worries, I’ve got you covered, any time you see the following symbol:

I will google-translate the ARM assembly back to our beloved x86!
You’re welcome.

The problems I’m facing

107

●

People is stupid

firefoxsucks

The problems I’m facing

108

● Detecting global variable access is hard

● Detecting switch statements (jump tables) is hard

Why are those necessary?
For the reassembly after the Instrumentation step to work correctly.
In short words, instrumentation is going to insert arbitrary assembly in the middle of the binary,
to do that I need to relocate stuff correctly, and to do that I need to know where stuff is in the
first place.

Part 1: Global variable access

109

Global variable access on x86

110

mov rax, [0x7fffff008]

Global variable access on ARM

111

adrp x0, 0x7fffff000
ldr x1, [x0, #8]

Global variable access on ARM

112

adrp x0, 0x7fffff000
ldr x1, [x0, #8]

mov rax, 0x7fffff000
add rax, 8
mov rbx, [rax]

Global variable access on ARM

113

adrp x0, 0x7fffff000
ldr x1, [x0, #8]

mov rax, 0x7fffff000
add rax, 8
mov rbx, [rax]

This is because ARM has fixed 4-byte instructions, so you cannot fit a 64 bit
address in them, you need to compute it using adrp (with which you can only
select a 4KB page).

Global variable access on ARM

114

adrp x0, 0x7fffff000
ldr x1, [x0, #8]

mov rax, 0x7fffff000
add rax, 8
mov rbx, [rax]

This is because ARM has fixed 4-byte instructions, so you cannot fit a 64 bit
address in them, you need to compute it using adrp (with which you can only
select a 4KB page).

This is a problem ‘cause the global address can (and will) be built in
much more convoluted ways than the example above

Pattern matching

115

Pattern matching

116

adrp x0, <page>
...
ldr x1, [x0 + <off>]

Detected

Pattern matching

117WEIZZ: Automatic Grey-Box Fuzzing for Structured Binary Formats

adrp x0, <page>
...
ldr x1, [x0 + <off>]

adrp x0, <page>
...
add x0, x0, <off>
...
ldr x1, [x0]

Detected Detected

Pattern matching

118

adrp x0, <page>
...
ldr x1, [x0 + <off>]

adrp x0, <page>
...
add x0, x0, <off>
...
ldr x1, [x0]

adrp x0, <page>
...
ldr x1, [memory]
...
add x0, x0, x1
ldr x2, [x0]

Detected Detected NOT detected

Pattern matching

119

adrp x0, <page>
...
ldr x1, [x0 + <off>]

adrp x0, <page>
...
add x0, x0, <off>
...
ldr x1, [x0]

adrp x0, <page>
...
ldr x1, [memory]
...
add x0, x0, x1
ldr x2, [x0]

Detected Detected NOT detected

The first two cases cover 99% of global accesses, especially with no compiler
optimization.

Pattern matching

120

- I stop doing this and instead use a full-blown emulator, such as Unicorn or
QEMU

- This is not great, it will slow down progress by at least 1-2 weeks as I’m not familiar with any
of them.

- I continue to improve the pattern matching, adding more and more edge
cases

- This is not well going in the long run, as even detecting the “simple” cases shown before was
not easy at all, and the complexity of the code is exploding pretty quickly. At some point, this
will become just me implementing my own emulator

Part 2: Switches!

121

Switches on ARM

122

adr x1, <first case addr>
adrp x19, <page>
ldrb w0, [x19, <off>]
add x0, x1, w0, sxtb 2
br x0

Switches on ARM

123

adr x1, <first case addr>
adrp x19, <page>
ldrb w0, [x19, <off>]
add x0, x1, w0, sxtb 2
br x0

mov rbx, <first case addr>
mov rax, word [<page>+<off>]
sal rax, 2
add rbx, rax
jmp rbx

Switches on ARM

124

adr x1, <first case addr>
adrp x19, <page>
ldrb w0, [x19, <off>]
add x0, x1, w0, sxtb 2
br x0

mov rbx, <first case addr>
mov rax, word [<page>+<off>]
sal rax, 2
add rbx, rax
jmp rbx

Switches on ARM

125

adr x1, <first case addr>
adrp x19, <page>
ldrb w0, [x19, <off>]
add x0, x1, w0, sxtb 2
br x0

mov rbx, <first case addr>
mov rax, word [<page>+<off>]
sal rax, 2
add rbx, rax
jmp rbx

The observant reader will notice that this is
just a particular case of global variable
access.
I need to symbolize *all* possible cases of the
switch as while instrumenting the offsets will
change for sure!

Yes but what about other disassemblers?

126

- Radare2:
- Correctly detects jump tables on x86, but not on ARM. They use their own implementation of

code emulation called ESIL.
- IDA:

- Correctly detects jump tables on both x86 and ARM. I have no idea on what they do use.
- Ghidra:

- Correctly detects jump tables on both x86 and ARM. I am almost sure they use their
own symbolic execution, but I didn’t spend that much time digging the java
code.

Yes but what about other disassemblers?

127

- Radare2:
- Correctly detects jump tables on x86, but not on ARM. They use their own implementation of

code emulation called ESIL.
- IDA:

- Correctly detects jump tables on both x86 and ARM. I have no idea on what they do use.
- Ghidra:

- Correctly detects jump tables on both x86 and ARM. I am almost sure they use their
own symbolic execution, but I didn’t spend that much time digging the java
code.

Conclusions?

128

- More pattern matching

- Code emulation

- Symbolic execution

A quick recap of retrowrite

Closed-source
binary

Symbolization Labeled assembly

129

ELF

Memory
Sanitization

Fuzzing
Coverage

Control Flow
Integrity Instrumented

assembly

