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‘ Basic Creature — Master student @
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When placed on the field, it will start
working on a random available thesis.

1 Costs 3 mana to deploy

2 Will constantly keep his questions to
the very end, much to the grief of his
advisor

"Just one more question..."

— EPFL
EPFL 2021 1337/1337
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Y Some of Minamo’s students claimed he was
|| as old as the knowledge he dispensed.

Prof. Mathias Payer
Advisor (EPFL)

e — Human Wizard

o] As Meddling Mage comes into play,

name a nonland card.

b The named card can’t be played.

“You, shall not, cast!”

Prof. Kenny Paterson
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offensive for a master thesis?”
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Binary rewriting, what




Binary rewriting, why

- Hardening
- Optimization
- Profiling

- Translation



Binary rewriting, why

Hardening Uses:
: Stack canary protection

- Optimization . Address Space Layout Randomization
- Profiling . Address/Memory sanitization
- Translation - Sandboxing

Examples:

Stackguard

RevARM

QASAN



Binary rewriting, why

- Hardening . Uses:
- Optimization : Cache‘ misses optimizations
Run-time patching (no restart)
- Profiling
- Translation Examples:
Dyninst

Frida



Binary rewriting, why

Hardening . Uses:
. Performance measurements
. Memory leak detection
Profiling - Fuzzing coverage information
. Taint analysis

Optimization

Translation

Examples:
Valgrind
AFL-QEMU



Binary rewriting, why

- Hardening Uses:
_ Optimization . Syscall translation for a foreign OS
P . Emulation of foreign architectures
- Profiling . Obfuscation/deobfuscation (packing)
- Translation '
Examples:
QEMU

movfuscator



Binary rewriting, how

Binary rewriting techniques are split in two big categories:

- Dynamic rewriting
- Static rewriting



Static rewriting

code

INSTRUMENTATION

code

INSTRUMENTATION

code

INSTRUMENTATION
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Dynamic rewriting

1



Static analysis

—
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Static analysis is like judging raw pasta from
its look, color, weight, texture, personality,
and, most importantly, bounciness.

Hard to do reliably, but possible. Requires
expert eye, a fine palate, and unconditional
love for pasta.

VS

Dynamic analysis

Dynamic analysis is like trying out pasta
while it's boiling, to check that taste, salt
and overall al-dente-ness are perfect.

Even a first timer can spot problems with
dynamic pasta analysis.
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Static vs dynamic

What

Static analysis

Dynamic analysis

Code vs Data

Code coverage
Self-modifying code
Just-In-Time code
Time requirements

What are we doing

Problem

Kinda problem
Big Problem
Big Problem
No problem

This one :(

No problem
No problem
No problem
No problem
Big problem

Not this one
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Static rewriting
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Static rewriting

Executable

data

code

INSTRUMENTATION

code

INSTRUMENTATION

code

INSTRUMENTATION

This is called in-place instrumentation.

Advantages:
- Lowest possible overhead

Disadvantages:
- Platform-dependent
- Unflexible
- All control flow AND references broken
- Need to rely on complex static
analysis and instruction patching to

readjust the layout
15



Static rewriting

Executable

data

code
—
code
e I
code

|

INSTRUMENTATION

'

B = unconditional jump

This is trampoline based instrumentation.

Advantages:
- Easy and fast to implement
- Does not break references/control flow

Disadvantages:

- Slow, two jumps inserted at each
Instrumentation point
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Static rewriting

Executable

data

code

-

data

IR /

Executable

data

Instrumented
code

This process is called IR lifting
(Intermediate Representation)

Advantages:
- Very flexible, can support many
architectures at the same time

Disadvantages:
- Hard to implement

- Translation can be inaccurate and lead
to slowdown

17



Symbolization

sym’bol-i-za'tion (sim-ba-li-za'shan) n.
“The process of producing reassemblable
assembly from a binary.

In other words,

Symbolization = disassembly + substituting
references with assembly labels

The result can be directly fed to an assembler to
produce a binary with the same functionality as
the original one. That's why it's called
reassemblable assembly.

Executable

Executable

data

data

code

Instrumented
code

symbolized
asm

compiler
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Symbolization example

Myfunc: Symbolized Myfunc:
movz x0, 3 movz x0, 3
bl 0x400 bl .LC400
cbz x0, 4 cbz x0, .LC802
mov x0, 1 mov x0, 1
ret ret
mov X0, 0 .LCB02:
ret mov x0, 0

ret



Static rewriting

This is called in-place instrumentation.

Executable
data
- Advantages:
code : - Lowest possible overhead
INSTRUMENTATION
Disadvantages:
code

- Platform-dependent

INSTRUMENTATION

code

INSTRUMENTATION




Distinguishing between code and data

Myfunc: Symbolized Myfunc:
movz x0, 3 movz x0, 3
bl bl
cbz x0, cbz x0,
mov x0, 1 mov x0, 1
ret ret
mov X0, 0 .LCB02:
ret mov X0, 0

ret



A not-so-trivial example

Myfunc:
cbz x0,
mov X0,
movz X0,
br x0
ret

1
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Distinguishing between code and data

®ee00 Verizon T 4:20 PM 76% .

{ Albums  chihuahua or muffin Select

A very hard problem, like many others in life

23



Retrowrite



RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization

Nathan Burow
Purdue University

Sushant Dinesh
Purdue University

Abstract—Analyzing the security of closed source binaries is
currently impractical for end-users, or even developers who rely
on third-party libraries. Such analysis relies on automatic vulner-
ability discovery techniques, most notably fuzzing with sanitizers
enabled. The current state of the art for applying fuzzing or
sanitization to binaries is dynamic binary translation, which has
prohibitive performance overhead. The alternate technique, static
binary rewriting, cannot fully recover symbolization information
and hence has difficulty modifying binaries to track code coverage
for fuzzing or to add security checks for sanitizers.

The ideal solution for binary security analysis would be a static
rewriter that can intelligently add the required instrumentation
as if it were inserted at compile time. Such instrumentation
requires an analysis to statically disambiguate between references
and scalars, a problem known to be undecidable in the general
case. We show that recovering this information is possible in
practice for the most common class of software and libraries:
64-bit, position independent code. Based on this observation,
we develop RetroWrite, a binary-rewriting instrumentation
to support American Fuzzy Lop (AFL) and Address Sanitizer
(ASan), and show that it can achieve compiler-level perfor-
mance while retaining precision. Binaries rewritten for coverage-
guided fuzzing using RetroWrite are identical in performance
to compiler-instrumented binaries and outperform the default
QEMU-based instrumentation by 4.5x while triggering more
bugs. Our implementation of binary-only Address Sanitizer is 3x
faster than Valgrind’s memcheck, the state-of-the-art binary-only
memory checker, and detects 80% more bugs in our evaluation.

Dongyan Xu Mathias Payer
Purdue University EPFL

The fundamental difficulty for static rewriting techniques
is disambiguating reference and scalar constants, so that a
program can be “reflowed”, i.e., having its code and data
pointers adjusted according to the inserted instrumentation and
data section changes. During assembly, labels are translated
into relative offsets or relocation entries. A static binary
rewriter must recover all these offsets correctly. There are
three fundamental techniques to rewrite binaries: (i) recompi-
lation [14], which attempts to lift the code to an intermediate
representation; (ii) trampolines [15], [16], which relies on indi-
rection to insert new code segments without changing the size
of basic blocks: and (iii) reassembleable assembly [12], [13],
which creates an assembly file equivalent to what a compiler
would emit, i.e., with relocation symbols for the linker to
resolve. Lifting code to IR for recompilation requires correctly
recovering type information from binaries, which remains an
open problem. Trampolines may significantly increase code
size, and the extra level of indirection increases performance
overhead. Consequently, we believe that resymbolizing bina-
ries for reassembleable assembly is one the most promising
technique for static binary rewriting.

In this paper, we show that static binary rewriting, lever-
aging reassembleable assembly, can produce sound and effi-
cient code for an important class of binaries: 64-bit position-

25



Retrowrite

Solves the data/reference distinction by focunsing only on PIE
(position-independent executables).

Originally developed for x86_64, we extend it to aarch6é4

Not a simple porting job! ARM has many specific quirks that introduced many
challenges

26



Fixed Size Instruction Set

41 90 adrp x1, 0x8000
20008052 movz wo, 0Oxl1

21a01b91l add x1, x1, 0x6e8

aa 97 bl sym.imp.__printf_chk

41 90 adrp x1, 0x8000
20008052 movz w0@, 0Oxl1

21e01d91 ada ¥1; Xl; OXTTS8

a6 97 bl sym.imp.__printf_chk




Fixed Size Instruction Set

41 90 adrp x1, 0x8000
20008052 movz w@, 0Oxl1

21a01b91l add x1, x1, 0x6e8

aa 97 bl sym.imp.__printf_chk

41 90 adrp x1, 0x8000
20008052 movz w@, 0Oxl

21e01d91 ada ¥1; Xl; OXTT8

a6 o7 bl sym.imp.__printf_chk




ARM-specific Issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jump tables



ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jJump tables



Global variables

Each instruction on ARM is 4 bytes large. This i1s why it is called a fixed-size
Instruction set.

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot
Include an address in a single instruction.

31



Global variables

Each instruction on ARM is 4 bytes large. This i1s why it is called a fixed-size
Instruction set.

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot
Include an address in a single instruction.

movz eax, <polnter>

32



Global variables

Each instruction on ARM is 4 bytes large. This i1s why it is called a fixed-size
Instruction set.

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot
Include an address in a single instruction.

movz - nter>
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Global variables

Each instruction on ARM is 4 bytes large. This i1s why it is called a fixed-size
Instruction set.

Unfortunately, on 64-bit processors, addresses are 8 bytes long. So, you cannot
Include an address in a single instruction.

movz - nter>

There are two alternative ways to use addresses on ARM:

- Using literal pools
- Using multiple instructions in a process called pointer construction or
pointer building

34



Using addresses on aarch64

- Literal pools

- Pointer constructions

35



Using addresses on aarch64

Literal pools

Pointer constructions

Literal pools are special memory regions
In which the compiler stores absolute
addresses that can be then stored into a
register through a standard memory
load.

ldr x0, =<pointer>

With the above instruction, we will store
the address <pointer> in register x0.
The address will be stored as a constant
(a literal) in a manually specified

memory region. i



Using addresses on aarch64

Literal pools

Pointer constructions

This means arithmetically building
pointers through a set of computations.

adrp x0, <poilnter>
add x0, x0, :lol2:<pointer>

The first adrp will load the base page In
X0, and then the internal page offset
(the lowest significant 12 bits of
<pointer>)is added to x0

37



Using addresses on aarch64

- Literal pools

- Pointer constructions

The problem:

> Pointer constructions require 2 instructions (or more). Literal pools require a single one, but it's
a memory load, so it is slower than pointer constructions in general.

> Compilers almost always use pointer constructions.

> Pointer constructions need to be detected, as pointers need to be symbolized (substituted with
an assembly label)

> Pointers are very common, and compilers absolutely love optimizations. They will mix and
match pointer constructions until they are very hard to detect

38



Literal pools vs pointer constructions

Name Static pointer ~ Dynamic pointer .. . poals Symbolized
constructions constructions pointer building
perlbench r 34285 168797 437 831 19.48% 2.91%
gece.r 9095 1232266 305 4.10% 0.95%
imagick.r 19127 16275621901 1.75% 0.30%
nab_r 2003 28193001 045 0.88% 0.34%
X2z T 1087 1471854761 0.33% 0.44%
mcf_r 108 7909 505 1.07% —-0.07%
1bm_r 90 36160 0.08% 0.59%
Average - - 4.12% 0.76%

We implemented both and ran a benchmark to compare times. We decided
to use pointer constructions for our final implementation.



Literal pools vs pointer constructions

Name Static pointer ~ Dynamic pointer .. . poals Symbolized
constructions constructions pointer building
perlbench r 34285 168797 437 831 19.48% 2.91%
gcc.r 9095 1232266 305 4.10% 0.95%
imagick.r 19127 16275621901 1.75% 0.30%
nab_r 2003 28193001 045 0.88% 0.34%
XZ.T 1087 1471854761 0.33% 0.44%
mcf_r 108 7909 505 1.07% -0.07%
lbm_r 90 36160 0.08% 0.59%
Average - - 4.12% 0.76%

We implemented both and ran a benchmark to compare times. We decided
to use pointer constructions for our final implementation.
> The big problem left was the detection of pointer constructions



First approach:
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First approach: Pattern Matching

Static analysis becomes hard very fast

42



Static analysis

Static analysis is like pasta: you are never done with it.

43



First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:

adrp x0, 0x8000
add x0, x0, 0x128

adrp x0, 0x8000

add x0, x0, 0x128

44



First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:

adrp x0, 0x8000
add x0, x0, 0x128

adrp x0, 0x8000
add x0, x0, 0x128

But way too many edgecases popped up, mostly out of compiler optimizations
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First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:

adrp x0, 0x8000 adrp x0, 0x8000 adrp x0, 0x8000
str x0, [sp, -0x8] add x0, x0, 0x128 add x0, x0, x1
’ ’ . and x0, x0, x2
... add x0, 0x128
ldr x0, [sp, -0x8] adrp x0, 0x8000

add x0, 0x128
add x0, x0, 0x128

But way too many edgecases popped up, mostly out of compiler optimizations
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First approach: Pattern Matching

We implement detection after spotting repeating simple patterns:

adrp x0, 0x8000 adrp x0, 0x8000

add x0, x0, 0x128 add x0, x0, x1
. and x0, x0, x2

add x0, 0x128

adrp x0, 0x8000
str x0, [sp, -0x8]

ldr x0, [sp, -0x8] adrp x0, 0x8000

add x0, 0x128
add x0, x0, 0x128

But way too many edgecases popped up, mostly out of compiler optimizations

> Static analysis becomes hard very fast

47



Second approach:

48



Second ap

oroach: section pruning

Cutting corners - apparently in academia it's a very
praised practice and it's called “research”

49



Second approach: section pruning

We try to fix the adrp only, ignoring all the
other instructions used to build the pointer

adrp x0, 0x3000

50



Second approach: section pruning

We try to fix the adrp only, ignoring all the
other instructions used to build the pointer

adrp x0, 0x3000

Retrowrite does not change sections other
than the . text, as instrumentation is
relevant only to the code of the binary, not
the data.

.bss

.data

.rodata

- GO

.text

0x1000

0x5337

0x8000

0xa000

0xa800

0xf0£0

51


https://app.diagrams.net/?page-id=eoRoQL8I7Rw_oCIxxabi&scale=auto#G1U23jmm0bHgeFsIjlARqZkca2t-owa2IF

Second approach: section pruning

We prune until we have only one possible
section left

adrp x0, 0x3000

.bss

.data

.rodata

- GO

.text

0x1000

0x5337

0x8000

0xa000

0xa800

0xf0£0

52
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Second approach: section pruning

We prune until we have only one possible
section left

f
_J .
adrp x0, 0x3000

We identify the regions which lie in
the +- 1 KB range from the adrp

.bss

.data

.rodata

- GO

.text

0x1000

0x5337

0x8000

0xa000

0xa800

0xf0f0
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Second approach: section pruning

We prune until we have only one possible
section left

4{
_J .
adrp x0, 0x3000

We identify the regions which lie in
the +- 1 KB range from the adrp

If there is only one section, then the
symbolization is easy:

adrp x0, (.bss + 0x2000)

.bss

.data

.rodata

- GO

.text

0x1000

0x5337

0x8000

0xa000

0xa800

0xf0f0
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Second approach: section pruning

We prune until we have only one possible
section left

adrp x0, (.bss + 0x2000) J

> sections other than .text are not modified

> offsets inside a single sections will stay
the same no matter the memory layout

.bss

BRE

BRE

2?7

BRE

0x??2°?7?

0x??2°?7?

0x??2°?7?

0x??2°?7?

0x??2°?7?

0x??2°?7?
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Second approach: section pruning

Sometimes this is not possible, as
multiple sections overlap the 1 KB range.

.bss

.data

.rodata

- GO

.text

0x1000

0x5337

0x8000

0xa000

0xa800

0xf0£0
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Second approach: section pruning

Sometimes this is not possible, as
multiple sections overlap the 1 KB range.

adrp x0, 0x7ffo —1

—

.bss

.data

.rodata

.got

.text

0x1000

0x5337

0x8000

0xa000

0xa800

0xf0f0
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Second approach: section pruning

Sometimes this is not possible, as
multiple sections overlap the 1 KB range.

adrp x0, 0x7ffo —1

> |n this case, we fall back to old
pattern matching

—

.bss

.data

.rodata

.got

.text

0x1000

0x5337

0x8000

0xa000

0xa800

0xf0f0
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Symbolizing pointer constructions

Using a combination of the first approach (pattern matching) and the second
(section pruning), we can rewrite binaries as large as the gcc benchmark of SPEC
CPU2017 (10 MB binary), correctly rewriting all pointer constructions.

We also rewrote the entire coreutils software corpus with retrowrite and verified
that the resulting binaries still pass all tests of the coreutils testing framework

59



ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jJump tables



Jump table detection

Contrary to x86, jump tables in ARM can be hard to detect

Jump tables on ARM are stored compressed, since instead of storing absolute
addresses, they store offsets from the base case.

This makes a jump table indistinguishable from random memory, as sometime a
every case is only 1 or 2 bytes large.

61



Jump table detection

Oxfffed6Sefffed65e
OxfffedeSefffed65e
Oxfffedebefffedb5e
Oxfffedesefffed65e
OxfffedeSefffed65e
OxfffedeSefffed65e
Oxfffed6Sefffed65e
Oxfffed6Sefffed65e
Oxfffed65efffed65e

Oxfffed65efffed65e
Oxfffedebefffed65e
Oxfffedesefffed65e
OxfffedeSefffed65e
OxfffedeSefffedb5e
OxfffedeSefffed65e

0x075d075d01990120
O0x075d01f201f201f2
0x026201f201f201f2
0x01f201f201f2075d
0x075d0199075d0199
0x01f201f201f2000f
0x01f201f201f201f2
0x01f201f201f20120
0x038803ab000001f2
0x019d0305ffbe019d
0x043affbeffbe0404
Oxffbeffbed3000383
0x02daffbeffbeffbe
0x020202740279027e
0x01f8ffbe01fdo274
0x0000034801e701f3

ARM
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Jump table detection

fffed65effffed65e
fffed65efffed65e
fffedesefffed65e
fffed6Sefffed65e
fffedesefffed65e
fffed65efffed65e
fffed6sefffed65e
fffed6Sefffed65e

fffed6sefffed65e
fffedesefffed65e
fffedesefffed65e
fffed6sefffed65e
fffedesefffed65e
fffed65efffed65e

075dPp75d01990120
075do1f201f201f2

026201f201f201f2
01f201f201f2075d
@75d0199075d0199
01f201f201f2000f
01f201f201f201f2
01f201f201f20120
0238803ab000001f2
019d0305ffbe019d
043affbeffbe0404
ffbeffbe03000383
02daffbeffbeffbe
020202740279027e
01f8ffbe0l1fdo274
0000034801e701f3

ARM
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An example jump table

adrp
add
ldrb
adr
add
br

X0,
X0,
wl,
X0,
X0,
X0,

<table_page_addr>
x0, <table_page_off>
[x0, wl, uxtw]
<base_case_addr>

X0, wl, sxtb 2
<base_case_addr>
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An example jump table

adrp x0, <table_page_addr>
add x@, x0, <table_page_off>
ldrb w1, [x0, wl, uxtw]

adr x0, <base_case_addr>

add x0, x0, wl, sxtb 2

br X0, <base case_addr>

> How to detect that it's a jump table?

We thought about pattern matching again, but we chose a more robust
solution this time
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Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

66



Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

cmp wl, 16

b.hi <default_case>

adrp x0, 0x8000

add x0, x0, 0x128

ldrb w1, [x0, wl, uxtw]
adr x0, 0x418

add x0, x0, wl, sxtb 2
br X0, <base case_addr>
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Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

cmp wl, 16

b.hi <default_case>

adrp x0, 0x8000

add x0, x0, 0x128

ldrb w1, [x0, wl, uxtw]

adr x0, 0x418

add x0, x0, wl, sxtb 2 // x0 = x0 + (wl << 2)
br X0, <base_case_addr> // x0
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Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

cmp wl, 16

b.hi <default_case>

adrp x0, 0x8000

add x0, x0, 0x128

ldrb w1, [x0, wl, uxtw] // x0
adr x0, 0x418 // X0
add x0, x0, wl, sxtb 2 // X0
br X0, <base_case_addr> // x0

0x418 + (*(x0 + wl) << 2)
0x418 + (w1l << 2)
X0 + (wl << 2)
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Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

cmp
b.hi
adrp
add
ldrb
adr
add
br

wl,

16

<default _case>

X0,
X0,
wl,
X0,
X0,
X0

0x8000

X0, 0x128

[x0, wl, uxtw]
0x418

X0, wl, sxtb 2

//
//
//
//
//
//

X0
X0
X0
X0
X0
X0

0x418 + (*x(0x8128 + wl) << 2)
0x418 + (*(x0 + 0x128 + wl) << 2)
0x418 + (*(x0 + wl) << 2)

0x418 + (wl << 2)

X0 + (wl << 2)
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Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

cmp
b.hi
adrp
add
ldrb
adr
add
br

wl, 16
<default_case>

X0, 0x8000

X0, x0, 0x128

wl, [x0, wl, uxtw]
X0, 0x418

X0, x0, wl, sxtb 2
X0

//
//
//
//
//
//
//

1f wl higher than 16

0x418 + (*x(0x8128 + wl) << 2)
0x418 + (*(x0 + 0x128 + wl) << 2)
0x418 + (*(x0 + wl) << 2)

0x418 + (wl << 2)

X0 + (wl << 2)
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Jump table detection with backwards slicing

We implemented a bare-bones symbolic emulator that backwards slices from
each indirect jump to check for offset-based branches:

cmp
b.hi
adrp
add
ldrb
adr
add
br

wl, 16
<default_case>

X0, 0x8000

X0, x0, 0x128

wl, [x0, wl, uxtw]
X0, 0x418

X0, x0, wl, sxtb 2
X0

// Exit if wl higher than 16

// X0 = 0x418 + (*(0x8128 + wl) << 2)

// X0 = 0x418 + (*(x0 + 0x128 + wl) << 2)
// X0 = 0x418 + (*(x0 + wl) << 2)

// X0 = 0x418 + (wl << 2)

// X0 = x0 + (wl << 2)

// x0

Results:
Base case: 0x418 Case register: wil
Jump table addr: 0x8128 Number of cases: 16
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Jump table detection with backwards slicing

The small symbolic emulator was an interesting project on its own, ended up with
the following features:

- Over 30 ARM instructions supported

- Support for interleaved instructions

- Support for nested jump tables

- Support for control-flow-interleaved jump tables

Dongsoo Ha, Wenhui Jin, and Heekuck Oh. “REPICA: Rewriting Position Independent Code of ARM”

73



ARM-specific issues

- Detecting and fixing pointer constructions
- Detecting and symbolizing jump tables
- Symbolizing large jump tables



Approaches we tried

1. Make a brand new jumptables with more space available for each case
a. Feasible, but wasted space and required changes in the jJump table code

2. Change the memory layout to make more space for the existing jump table
a. Hard to implement and would have broken the “not instrumenting data”

3. Tradeoff some of the jump table precision by “enlarging” it
a. Easyto implement and required only minor changes in the code
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Symbolizing jump tables

adrp
add
ldrb
adr
add
br

X0,
X0,
wl,
X0,
X0,
X0,

0x8000

X0, 0x128

[x0, wl, uxtw]
0x418

X0, wl
<base_case_addr>

.LCd568:

.byte

.LCd569:

.byte

.LCd56a:

.byte

.LCd56b:

.byte

.LCd56¢:

.byte

.LCd56d:

.byte

.LCd56e:

.byte

8

12

12

20

12

20

40
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Symbolizing jump tables

adrp
add
ldrb
adr
add
br

X0,
X0,
wl,
X0,
X0,
X0,

0x8000

X0, 0x128
[x0, wl, uxtw]

0x418

X0, wl, sxth 2
<base_case_addr>

.LCd568:

.byte

.LCd569:

.byte

.LCd56a:

.byte

.LCd56b:

.byte

.LCd56¢:

.byte

.LCd56d:

.byte

.LCd56e:

.byte

10
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Symbolizing jump tables

adrp
add
ldrb
adr
add
br

X0,
X0,
wl,
X0,
X0,
X0,

0x8000

X0, 0x128
[x0, wl, uxtw]

0x418

X0, wl, sxtb 2
<base_case_addr>

.LCd568:

.byte

.LCd569:

.byte

.LCd56a:

.byte

.LCd56b:

.byte

.LCd56¢:

.byte

.LCd56d:

.byte

.LCd56e:

.byte

.LCa3a0-.

.LCa3a0-.

.LCa3bc-.

.LCa3bc-.

.LCa384-.

.LCa384-.

.LCa350-.

LCa350)/4
LCa350)/4
LCa350)/4
LCa350)/4
LCa350)/4
LCa350)/4

LCa350)/4
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Symbolizing jump tables

adrp
add
ldrb
adr
add
br

X0,
X0,
wl,
X0,
X0,
X0,

0x8000

X0, 0x128
[x0, wl, uxtw]

0x418

X0, wl, sxtb 4
<base_case_addr>

.LCd568:

.byte

.LCd569:

.byte

.LCd56a:

.byte

.LCd56b:

.byte

.LCd56¢:

.byte

.LCd56d:

.byte

.LCd56e:

.byte

.LCa3a0-.

.LCa3a0-.

.LCa3bc-.

.LCa3bc-.

.LCa384-.

.LCa384-.

.LCa350-.

LCa350)/16
LCa350)/16
LCa350)/16
LCa350)/16
LCa350)/16
LCa350)/16

LCa350)/16
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Jump table enlargement

adrp x0, 0x8000 br x1
add x0, x0, 0x128
ldrb Wl, [X@, Wl, UXtW] 0 movz
adr x0, 0x418
4 ret
add x0, x0, wl
br X0, <base_case_addr> 8 movz
12 ret
0x8000: 0
0x8001: 8 16 movz
0x8002: 16 20 | ret
0x8003: 24
0x8004: 32 24  movz
0x8005: 40

28 ret


https://app.diagrams.net/?scale=auto#G1bv9EhFW5CldK1UE-inK00HROh6VXUdRHUrfL08lhlg4
https://app.diagrams.net/?page-id=9N5noylN3y2ohQDQ_9yT&scale=auto#G1RQYmyos1kFLnXsndn8WnYhYmkPyRcB2q

Jump table enlargement

adrp x0, 0x8000

add x0, x0, 0x128

ldrb w1, [x0, wl, uxtw]
adr x0, 0x418

add x0, x0, wl,

br X0, <base case_addr>

0x8000: 0O
0x8001:
0x8002:
0x8003:
0x8004:
0x8005:

br x1

movz

ret

movz

ret

movz

ret

movz

ret

x0,

x0,

x0,

x0,
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Jump table enlargement

adrp x0, 0x8000

add x0, x0, 0x128

ldrb w1, [x0, wl, uxtw]
adr x0, 0x418

add x0, x0, wl,

br X0, <base case_addr>

0x8000: 0O
0x8001:
0x8002:
0x8003:
0x8004:
0x8005:

12

20

28

br x1

movz

ret

movz

ret

movz

ret

movz

ret

x0,

x0,

x0,

x0,
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Jump table enlargement

adrp x0,
add x0,
ldrb wil,
adr x0,
add x0,
br X0,

0x8000:
0x8001:
0x8002:
0x8003:
0x8004:
0x8005:

0

0x8000
[x0, wl, uxtw]

X0, wl,
<base_case_addr>

12

20

24

28

br x1

movz x0,

ret

NOP

NOP

movz x0,

ret

NOP

NOP

0

1
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Results



SPEC CPU2017 benchmarks
Memory sanitization instrumentation (quite heavy)
30% slower than source-based memory sanitization

Orders of magnitude faster than dynamic rewriting
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Runtime (seconds)

SPEC CPU 2017 benchmark results

Compile flags used: -fno-unsafe-math-optimizations -fno-tree-loop-vectorize -O3

10000 -

8000 -

6000 -

4000 A

2000 -

47844

7369

9704

27830

17799

Baseline
Symbolized
Source_Asan
Valgrind
Retrowrite

10411
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Key improvements over previous works

- First zero-overhead aarch64 rewriter that supports enlarged jump-tables
- First attempt at symbolizing ARM
- Fast static memory sanitization instrumentation pass

- Focus on modularity and ease of extensibility.
The codebase is around ~2k LOC of python, and we have already numerous issues on github
by people extending it with their own instrumentation
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Limitations

- Does not work on non-C binaries (no C++, java, handwritten assembly)

- Works only on binaries produced by well-behaved compilers (gcc, clang)
- No self-modifying code
- No inline assembly!
- No obfuscated code/packed payloads/malware hiding techniques

- Other common limitations of static analysis:
- Disassembly is generally undecidable
- If there are no symbols in a binary, forced to rely on imperfect heuristics for things like
function detection
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Future Work

- More programming languages support, like C++ exceptions

- Support for instrumenting kernel modules: there are subtle differences for
symbolizing kernel modules, but this could open up the way to efficiently
fuzz Android vendor modules and other embedded firmwares

- Support for more operatings systems: right now there is only support for
Linux ELF executables, but targeting Windows and OSX would be interesting

- Thanks to the modular design of RetroWrite, interesting additional
instrumentation passes can be implemented such as shadow stack,
control-flow authentication with PAC codes, coverage guidance for fuzzing,

and more.
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Special thanks to...

In no particular order, the people in this list had a major impact on my journey

Thanks :D
giuliagl gannimo frigol
chiccosala filippog francesco_ladevaia
linus14 tulymyhero jean_michel
picorana gallileo flagbot
neon matteo_chen pOlyglots
lamberto_lamberti dariusk
frattack andreafioraldi
neopt null
lightblue kennyog
ak robin_jadoul
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Thanks for listening!



Appendix



Name Symbolization only Source ASAN Binary ASAN Valgrind
cpugcc.r 0.95% 145.80% 196.09% 1729.20%
perlbench r 2.91% 173.84% 260.10% 3377.03%
imagick r 0.30% 71.53% 71.17%  1578.53%
nab_r 0.34% 28.57% 27.21% 1110.82%
XZ.T 0.44% 105.79% 144.76%  1036.57%
mcf_r -0.07% 40.77% 83.74%  390.94%
1bm_r 0.59% 49.58% 97.31%  715.46%
Average 0.76% 84.04% 119.61% 1429.94%

Table 5.3: Overhead of RetroWrite-ARM without instrumentation and of RetroWrite-ARM
with BASAN instrumentation on SPEC CPU2017 on the Atlas machine compared to the original
benchmark and the original benchmarks compiled with source based ASAN.
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BASAN



Binary ASAN

ASAN = Address SANitizer

Developed by Google, as a compiler pass for LLVM to provide memory safety in C
based languages

Works by hooking malloc, free and friends and inserting a check before every
memory load/store done by the binary

BASAN = Binary Address SANitizer

It's the name of our instrumentation pass. The functionality is very similar to the
original ASAN, with differences from the fact that BASAN is applied to an already

compiled binary, without using its source code o



Register Savings

We can use static analysis to determine which registers can be safely used inside
a function without overwriting important values to avoid wasting time pushing
them on the stack and popping them back later

stp x17, x16, [sp, -16]!
stp x15, x14, [sp, -16]!
ge g, [Fp, =16l

mrs x13, nzcv mrs x13, nzcv

add x17, x1, 2488 add x17, x1, 2488

mov x14, 0x1000000000 mov x14, 0x1000000000
lge sdlEy sl & lzie el salr, &

ldrsb wi5, [x14, x16] ldrsb wi5, [x14, x16]
cbz w15, .LC_ASAN_EXIT cbz w15, .LC_ASAN_EXIT
mov x0, x17 mov x0, x17

bl __asan_report_load8_noabort bl __asan_report_load8_noabort
.LC_ASAN_EXIT: .LC_ASAN_EXIT:

MSEENZ GRS 1S msr nzcv, xl13

ldr x13, [spl, 16 ; original instruction
1dp x15, x14, [spl, 16 1dr x1, [x1, #0x9b8]

1ldp x17, x16, [spl, 16
; original instruction
1ldr x1, [x1, #0x9b8]

Listing 5.1: Left: Instrumented 8-byte memory load. Right: Instrumented 8-byte memory load
with register savings turned on (best case scenario).



Register Savings

Name Register savings No registers
gcec.r 196.09% 259.64%
perlbench r 260.10% 453.71%
imagick r Z1:17% 173.40%
nab_r 27.21% 74.22%
XZ_T 144.76% 212.01%
mcf_r 83.74% 124.92%
lbm_r 97.31% 99.58%
Average 119.61% 195.79%

Table 5.4: Overhead of RetroWrite-ARM's memory sanitization with register savings turned on
or off. On average, the register savings optimization produces code with 48.1% less overhead.



Comparison to trampolines

Name Binary ASAN Trampoline ASAN
perlbench r 260.10% 636.41%
imagick r 71.17% 188.96%
nab_r 27.21% 77.82%
XZ_T 144.76% 232.64%
mcf _r 83.74% 135.31%
1bm_r 97.31% 104.79%
Average 109.73% 227.38%

Table 5.5: Overhead of RetroWrite-ARM's in-place instrumentation and trampoline-based in-
strumentation using memory sanitization as the instrumentation pass. On average, trampolines
are 56% slower than in-place instrumentation.
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END
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A quick recap of Retrowrite

Closed-source
binary

£33~

Symbolization

Labeled assembly

Memory
Sanitization

Fuzzing
Coverage —>

Control Flow /

Integrity Instrumented
assembly
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A quick recap of retrowrite

-
- H1—
—11

source Profit
binary
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A quick recap of retrowrite

) - $35 T8

closed
source
binary

Symbolization

Instrumentation

ASan
KCov

Fuzzing hooks
etc ...

PR
Profit
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A small history lesson

Sushant dinesh + Mathias Payer original retrowrite tool for x86-64

Matteo Rizzo kretrowrite for x86-64 kernel modules

Me + Jean-Michel retrowrite for ARM 64 (aarch64)

104



A small history lesson

Sushant dinesh + Mathias Payer

Matteo Rizzo

Me + Jean-Michel

www.dithub.com/hexhive/retrowrite

www.qgithub.com/hexhive/ku retrowrite

original retrowrite tool for x86-64

kretrowrite for x86-64 kernel modules

retrowrite for ARM 64 (aarch64)

official public repo (old, but will get updated)

kernel version + ARM branch in development
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http://www.github.com/hexhive/ku_retrowrite

Disclaimer

While aarch64 it’s an architecture we all love and cheer (well, at least

before you actually start working with it), I realize that not everyone is
comfortable reading ARM asm.

No worries, I’ve got you covered, any time you see the following symbol:

I will google-translate the ARM assembly back to our beloved x86!
You’re welcome.
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The problems I’m facing

People is stupid

firefoxsucks
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The problems I’m facing

e Detecting global variable access is hard

e Detecting switch statements (jump tables) is hard

Why are those necessary?

For the reassembly after the Instrumentation step to work correctly.
In short words, instrumentation is going to insert arbitrary assembly in the middle of the binary,

to do that I need to relocate stuff correctly, and to do that I need to know where stuff is in the
first place.
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Part 1: Global variable access
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Global variable access on x86

mov rax, [Bx7fffffoo8]
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Global variable access on ARM

adrp x0, Ox7fffffooo
1dr x1, [x0, #8]
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Global variable access on ARM

B

adrp x0, Ox7fffffooo
1dr x1, [x0, #8]

mov rax, Ox7fffffooo
add rax, 8
mov rbx, [rax]

112



Global variable access on ARM

adrp x0, Ox7fffff
1dr x1, [x0, #8]

mov rax, Ox7fffffooo
add rax, 8
mov rbx, [rax]

This is because ARM has fixed 4-byte instructions, so you cannot fit a 64 bit
address in them, you need to compute it using adrp (with which you can only
select a 4KB page).
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Global variable access on ARM

adrp x0, Ox7fffff
1dr x1, [x0, #8]

mov rax, Ox7fffffooo
add rax, 8
mov rbx, [rax]

This is because ARM has fixed 4-byte instructions, so you cannot fit a 64 bit
address in them, you need to compute it using adrp (with which you can only
select a 4KB page).

This is a problem ‘cause the global address can (and will) be built in
much more convoluted ways than the example above
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Pattern matching
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Pattern matching

adrp x@, <page>

ia; x1, [x0 + <off>]

Detected
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Pattern matching

adrp x@, <page> adrp x@, <page>
ia; x1, [x0 + <off>] éaa x0, x0, <off>

ia} x1, [x0]

Detected Detected

WEIZZ: Automatic Grey-Box Fuzzing for Structured Binary Formats

117



Pattern matching

adrp x0, <page>

ia; x1, [x0 + <off>]

Detected

adrp x0, <page>
éaa X0, x0, <off>

ia} x1, [x0]

Detected

adrp x0, <page>
ia; x1, [memory]
add x0, x0, x1
ldr x2, [x0]

NOT detected
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Pattern matching

adrp x@, <page> adrp x@, <page>
ia} x1, [x0 + <off>] éaa x0, x0, <off>

ia} x1, [x0]

Detected Detected

adrp x@, <page>
ia; x1, [memory]
add x0, x0, x1
ldr x2, [x0]

NOT detected

The first two cases cover 99% of global accesses, especially with no compiler

optimization.

119



Pattern matching

- | stop doing this and instead use a full-blown emulator, such as Unicorn or
QEMU

- This is not great, it will slow down progress by at least 1-2 weeks as I'm not familiar with any
of them.

- | continue to improve the pattern matching, adding more and more edge

Cases
- This is not well going in the long run, as even detecting the “simple” cases shown before was
not easy at all, and the complexity of the code is exploding pretty quickly. At some point, this
will become just me implementing my own emulator
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Part 2: Switches!
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Switches on ARM

adr x1, <first case addr>
adrp x19, <page>

ldrb wo, [x19, <off>]

add x0, x1, w@, sxtb 2

br x0
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Switches on ARM

adr x1, <first case addr>
adrp x19, <page>

ldrb wo, [x19, <off>]

add x0, x1, w@, sxtb 2

br x0

mov
mov
sal
add

jmp

rbx,
rax,
rax,
rbx,
rbx

<first case addr>
word [<page>+<off>]
2

rax
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Switches on ARM

adr x1, <first case addr>
adrp x19, <page>

ldrb wo, [x19, <off>]

add x0, x1, w@, sxtb 2

br x0

1f 1f17

1f1f Qelf
081f 1f1f
1f1f 1c

mov
mov
sal
add

jmp

rbx,
rax,
rax,
rbx,
rbx

<first case addr>
word [<page>+<off>]
2

rax
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Switches on ARM

adr x1, <first case addr>
adrp x19, <page>

ldrb wo, [x19, <off>]

add x0, x1, w@, sxtb 2

br x0

1f 1f17

1f1f Qelf
081f 1f1f
1f1f 1c

mov rbx,
mov rax,
sal rax,
add rbx,
jmp rbx

<first case addr>
word [<page>+<off>]
2

rax

The observant reader will notice that this is
just a particular case of global variable

access.

I need to symbolize *all* possible cases of the
switch as while instrumenting the offsets will

change for sure!
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Yes but what about other disassemblers?

- Radare2:
- Correctly detects jump tables on x86, but not on ARM. They use their own implementation of
code emulation called ESIL.
- |DA:

- Correctly detects jump tables on both x86 and ARM. | have no idea on what they do use.

- Ghidra:

- Correctly detects jump tables on both x86 and ARM. | am almost sure they use their
own symbolic execution, but I didn’t spend that much time digging the java
code.
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Yes but what about other disassemblers?

- Radare2:

- Correctly detects jump tables on x86, but not on ARM. They use their own implementation of
code emulation called ESIL.

- |IDA:

- Correctly detects jump tables on both x86 and ARM. | have no idea on what they do use.

- Ghidra:

- Correctly detects jump tables on both x86 and ARM. | am almost sure they use their
own symbolic execution, but I didn’t spend that much time digging the java
code.

ghidra / Ghidra / Features / Base / src / main / java / ghidra / util / state / analysis / RelativeJumpTableSwitch.java
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Conclusions?

- More pattern matching
- Code emulation

- Symbolic execution
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A quick recap of retrowrite

Closed-source
binary

£33~

Symbolization

Labeled assembly

Memory
Sanitization

Fuzzing
Coverage —>

Control Flow /

Integrity Instrumented
assembly
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