
ArmWrestling: efficient binary

rewriting for ARM

Master Thesis

Luca Di Bartolomeo

April 19, 2021

Advisor: Prof. Dr. Mathias Payer

Supervisor: Prof. Dr. Kenny Paterson

Institute of Information Security

Department of Computer Science, ETH Zürich

This thesis was developed with the guidance of prof.Mathias Payer and

the HexHive research group at EPFL, and under the remote supervi-

sion of prof. Kenneth Paterson at ETH.

No matter where you go, everyone is connected.

— Serial Experiments Lain

Dedicated to my parents, my brothers Sara and Leo, my dear Giulia,

to my friends back in Rome and to my roommates Matteo and Fil-

ippo who all inspired me and kept up with my constant complaining.

Thanks!

Acknowledgments

I would like to thank my advisor, Prof. Mathias Payer, for his support,

guidance, and for assigning me this inspiring project. I wish all the

best for him, and I look forward to continue working with him in the

future.

I would like to thank as well the HexHive research group, as I always

found myself very welcome there, even if I could visit them only once

a week.

The last six months have been inspiring and pleasant: I had very good

conversations with everyone at EPFL and I always felt like I was learn-

ing a lot.

Special thanks go to my family and my friends in Rome. Their support

was always available even when remote and it has been a huge pleasure

to visit them once in a while in Italy. I am also need to thank my

S.O. Giulia, I felt she was always behind my back, keeping a good

check on my mental sanity during the worst times of the outbreak.

My roommates Matteo and Filippo deserve a mention here as well,

since their patience and their rubber duck debugging skills proved to

be fundamental during some nasty bug-hunting sessions.

Finally, I would also like to mention my CTF team, Flagbot, and the

teams I had played with occasionally, namely Polyglots and TRX; they

made me spend so many weekends staying at home but ultimately let

me meet many new interesting people. Thanks!

iii

Abstract

Closed source programs are particularly hard to audit for vulnerabili-

ties. Moreover, it is often the case that modern security measures and

mitigations are available only as compiler passes that require posses-

sion of the source code. Even if there were good recent attempts [24] [30] [25]

at completely avoiding usage or closed source libraries of modules that

run at privileges higher than we might want (e.g., manufacturer spe-

cific kernel modules [16]) in practice it is almost impossible to restrict

our computing to exclusively open source and audited software. It

is then of paramount importance that we find new ways of securing

software without source code.

Many existing tools were developed to improve the auditability of

closed source programs, especially aimed at helping the fuzzing pro-

cess, with approaches such as implementing AddressSanitizer (a com-

piler pass only applicable when the source code is available) through

dynamic instrumentation. However, even state-of-the-art dynamic in-

strumentation engines incur in prohibitive runtime overhead (between

3x and 10x and more). Static rewriters introduce less overhead, but

they are mostly targeted towards the x86 architecture.

We would like to show that symbolization for ARM binaries is a vi-

able alternative to existing static approaches, that has less flexibility

(only works on C, position independent binaries) but has negligible

overhead. We present RetroWrite-ARM, a zero-overhead static binary

rewriter for aarch64 executables that solves key challenges such as

pointer construction symbolization and jump table instrumentation,

based on the (x86 64) RetroWrite project.

Our proof of work implementation of a memory sanitizer instrumen-

tation pass has the same core functionality of AddressSanitizer, and

our benchmarks show that it is an order of magnitude faster than Val-

grind’s memcheck.

iv

Contents

Contents v

1 Introduction 1

2 Background 6

2.1 Binary Rewriting . 6

2.1.1 Binary rewriting in short 7

2.1.2 Applications of binary rewriting 9

2.2 Dynamic and Static Instrumentation 10

2.2.1 Dynamic instrumentation 10

2.2.2 Static instrumentation 11

2.3 Symbolization . 12

2.4 Examples of code instrumentation 13

2.4.1 Fuzzing . 13

2.4.2 ASan . 14

2.5 The ARM architecture . 15

3 Design 18

3.1 Goals . 18

3.2 System architecture . 18

3.2.1 Differences with RetroWrite-x64 19

v

Contents

3.3 Key Issues . 20

3.3.1 Pointer construction . 20

3.3.2 Jump table target recovery 23

3.3.3 Enlarging jump tables 25

3.3.4 Control Flow broken by instrumentation 27

3.3.5 Instrumentation register saving 27

4 Implementation 28

4.1 Symbolizer . 28

4.1.1 Detecting pointer constructions 28

4.1.2 Symbolization of pointers 31

4.2 Jump Tables . 33

4.2.1 Detection of jump tables 33

4.2.2 Jump Table symbolization 35

4.2.3 Jump Table enlargement 36

4.3 Instrumentation (BASan) . 37

5 Evaluation 41

5.1 Setup and Hardware . 41

5.2 Performance . 43

5.2.1 Symbolization performance 43

5.2.2 Memory sanitization performance 44

5.2.3 Optimization: register savings 48

5.2.4 Comparison to trampolines 49

5.3 Correctness . 50

5.4 Comparison to Egalito . 51

6 Related Work 52

6.1 Dynamic binary rewriting . 52

6.2 Static binary rewriting . 53

6.2.1 Static rewriters that use trampolines 53

vi

Contents

6.2.2 Static rewriters that lift to IR / full translation 53

6.2.3 Static rewriters that use symbolization 54

6.3 Static rewriters aimed at ARM binaries 54

6.4 Summary of related work . 55

7 Future Work 57

8 Conclusion 59

Bibliography 60

vii

Chapter 1

Introduction

Mobile environments are ubiquitous but often lack security updates. For ex-

ample, on Android over 60% of devices are outdated by at least two years [1].

Security testing in mobile environments is extremely challenging as ven-

dors often release components as binary-only, i.e., without accompanying

source code. Binaries cannot be readily evaluated by security analysts, re-

sulting in potentially undiscovered vulnerabilities in these binary-only mod-

ules, which often run with high privileges and are exposed to the network.

Binary rewriting is a process that allows insertion of arbitrary code (instru-

mentation) in an executable without the need to recover its source code,

allowing the insertion of hardening measures that can substantially reduce

the exploitability in the case of a vulnerability. Binary rewriting is also vital

to analysts looking for new vulnerabilities, as it’s an important step in the

fuzzing of closed source software.

Binary rewriters can be split into two main categories: dynamic rewriters ,

that inject code into the target executable at run-time, and static ones , that

transform the executable into a new one with the instrumentation already

inserted. The first kind allow more flexibility, and support a broader range

of binaries, but they insert noticeable overhead during its execution; the

static ones instead have a much smaller footprint in execution time but are

1

only applicable on binaries on which static analysis (the analysis without

runtime information) is successful.

While there is no shortage of static rewriters targeted towards the x86 archi-

tecture, only a few support ARM. In fact, ARM binaries require a very different

kind of static analysis than x86, and present many challenges that are not

found on x86. Those challenges derive from the fact that the ARM ISA (In-

struction Set Architecture) is fixed-size, and all instructions occupy exactly

4 bytes. Since addresses in the 64 bit space are 8-byte long, they do not fit

into a single instruction, and executables must “craft” addresses in various

ways (storing them in a data section at compile time, or using arithmetic

expressions to construct them). Many static analysis techniques commonly

used on x86 are not usable anymore on ARM for this reason. There are a

number of dynamic rewriters that support ARM, and they work by running

together with the binary to instrument and modifying it in real time: this

allows them to use powerful dynamic analysis techniques to recover more

information, but as a side effect they introduce large overhead even with

very light instrumentation.

Introducing only a small overhead onto an instrumented binary is a very

desirable feature to have, as nowadays the largest use case of binary instru-

mentation is the injection of fuzzing hooks and memory sanitization checks

in a closed source binary to drastically improve the efficiency of modern

fuzzing engines. Using a static binary rewriter versus a dynamic one when

fuzzing can lead to an order of magnitude more executions per second.

Fuzzing on the ARM architecture has had little growth compared to x86,

and one of the main causes is that the instrumentation passes required for

fuzzing are supported only by heavy dynamic binary rewriters, which lead

to low fuzzing performances due to their overhead. The fact that ARM be-

came popular only very recently, combined with the difficulty of perform-

2

ing static analysis on it, are the reasons behind the lack of advanced static

binary rewriters for ARM. In fact, most of the existing ones rely on simpler

techniques (like trampolines) that require only superficial analysis, but are

not flexible nor efficient.

Static analysis is the core foundation on many state-of-the-art static binary

rewriters: one of the most recent and successful ones for x86 64 is RetroWrite [11].

It uses a novel technique called symbolization, which is the process of trans-

forming an executable back to an assembly listing that is re-assemblable,

where absolute addresses are substituted with assembly labels (or symbols).

Having all addresses substituted with labels makes adding custom code (in-

strumentation) or arbitrary transformation on existing code very easy, as

the resulting assembly can be parsed by a generic off-the-shelf assembler

and assembled into a new instrumented executable.

In this thesis we would like to introduce RetroWrite-ARM, a new, advanced

static rewriter for ARM64 binaries that builds on the original RetroWrite (from

now on referred as RetroWrite-x64) and uses the same symbolization tech-

nique to allow the development of complex and efficient instrumentation for

closed-source binaries. Our work focuses on the development of novel ap-

proaches to tackle the static analysis challenges presented by ARM executables

such as pointer construction symbolization and jump table enlargement. We

also implement an example instrumentation pass (implementing the same

algorithm of Google’s AddressSanitizer, an LLVM compiler pass to sanitize

memory accesses) to show the ease and efficiency of writing instrumenta-

tion using the symbolization technique, we then measure its performance

to demonstrate that the execution time is comparable to the original LLVM

pass (that requires the source code of the binary to instrument, so impossible

to apply on binary-only modules.)

The main challenges we had to tackle were the detection and recovery of

3

pointers, that are either stored in a read-only region or more commonly are

built through a series of arithmetic operations because a single pointer can-

not fit into a single ARM instruction. This required reverse-engineering the

patterns of code the compiler generates and clever ways to transform said

arithmetic sequences of instructions into symbolized assembly snippets that

can support the insertion of arbitrary code in between. Another big part of

our work focused on the detection, recovery and symbolization of jump ta-

bles: switch statements on ARM binaries are very different from x86 (they are

stored as a set of offsets from a given base address, not as a sequential list of

absolute addresses). All the standard heuristics methods that are commonly

used on x86 cannot be used on ARM as the jump tables are indistinguish-

able from random data, so this required the development of a bare-bones

symbolic emulator to detect them. Furthermore, since they are stored com-

pressed in memory (if cases are close to each other, every offset may occupy

only 1 or 2 bytes instead of the normal 8 bytes), they do not support the

insertion of large instrumentation. We solved this problem with a new tech-

nique called jump table enlargement which lets us introduced arbitrary-sized

instrumentation inside a jump table.

We will show that our binary rewriter incurs in very low overhead through

standard CPU benchmarks commonly used to evaluate binary rewriters.

We will also show that our implementation scales well to COTS binaries, as

the benchmarks include large programs such as gcc and perl. Finally, we

also evaluate the performance of our implementation of AddressSanitizer,

showing that it is competitive with its source-based counterpart, adding

only 19% additional overhead on top of it (depending on the binary and

hardware configuration of the machine).

Our core contribution consists in the development of the first zero-overhead

aarch64 static binary symbolizer that scales to large COTS binaries, with key

insights in detecting and symbolizing pointer construction mechanisms and

4

compressed jump tables, and an efficient instrumentation pass that retrofits

aarch64 binaries with AddressSanitizer.

5

Chapter 2

Background

Here we will provide a summary of the basic notions required to understand

the underlying concepts behind RetroWrite-ARM and the problems we faced

during its development.

2.1 Binary Rewriting

Binary rewriting describes the alteration of a compiled program in such a

way that the binary under investigation remains executable. It is useful in

the case some additional functionality needs to be added to a closed-source

binary, or to perform live changes on an already running executable. At

first, binary rewriting was considered a “hack” to change parts of a program

during execution (run-time patching, with the first uses dating back to the

60s on the PDP-11 [22]) but today it evolved into a stable and researched field

of computer science, with a number of applications ranging from security

to software optimization.

In the next subsection we will briefly explain how it works, and then we will

present the most common uses of binary rewriting.

6

2.1. Binary Rewriting

2.1.1 Binary rewriting in short

To better explain how does a rewriting algorithm work, we can summarize

its process into four main steps [33]:

• Parsing: Executables are complex formats and are often optimized for

speed instead of readability. Separating code, data and metadata in an

executable format is not easy: often all three are scattered through the

file in different ways. Furthermore, data is usually untyped (there is no

type information on global variables), and the boundary between code

and data is not always clearly defined as in many architectures in-

structions have variable width. Finally, recovering and distinguishing

references (pointers) from scalars (constants) is a problem which was

only recently solved on position-independent executables [11]. The

purpose of this step is to parse the input file and separate informa-

tion between code and data into clearly defined structures ready to be

analyzed in the next step.

• Analysis: This step focuses on the code of the executable, and on the

recovery of as much information as possible from the raw instructions

present in the code sections of the executable. Usually this involves the

disassembly of the raw instructions to be able to analyze them individ-

ually, the study of the structure of the code to split it into functions,

and the analysis of the branches of each function to build the control

flow graph (CFG). Often times this step also involves the computation

of all cross-references (list of pointers to a specific address). At the end

of this step the rewriter should have a very precise representation of

the executable in a convenient data structure that allows fast answers

to queries such as listing all the call sites of a specific function.

• Transformation: With all the information gathered from the analysis,

now the rewriter must identify all the instrumentation locations in

7

2.1. Binary Rewriting

which code has to be altered/injected. For example, in the case of

a memory sanitization instrumentation pass, the code must locate all

memory stores and all memory loads and mark them for insertion of

snippets of code that check if the target memory region lies inside an

uncorrupted heap chunk, and abort execution if the check fails.

• Code generation: The rewriter now has to make sure that the inserted

instrumentation does not break the intended functionality of the orig-

inal executable, and then patch it or generate a new executable from

scratch. There are multiple ways to achieve this step, the most common

ones being using trampolines (creating a section with the new code in

the target binary, and then inserting branches at instrumentation loca-

tions to make the new code reachable), in-place instrumentation (gen-

eration of a new executable with the new instructions already inserted

at each instrumentation locations, with all the code and data references

adjusted to make place for the new code), or run-time patching.

The last two steps, “transformation” and “code generation” are where most

of the research in binary rewriting is done. We will shortly list the most

prominent techniques that rewriters use to perform those latest two steps:

• Trampolines: All the instrumentation code is put into a new section

in the binary. At every instrumentation point, the rewriter changes an

instruction with a branch that redirects execution to the right location

inside the new section. At the end of the instrumentation, there is a

branch that leads back to the old location in the executable. This is

one of the simplest methods as the layout of the code section stays the

same and no references or branches are broken inside the executable.

• Direct: At each instrumentation point, code is either overwritten or

shifted to make space for the instrumentation to insert. In the case

of a shift, all references and branches must be carefully readjusted to

8

2.1. Binary Rewriting

match the displacement of the code.

• Lifting: This approach involves lifting the binary code to an Intermedi-

ate Representation (IR) language similar to the one used in compilers

such as LLVM. The logic behind it is that IR usually is a simpler lan-

guage on which it is easier to apply instrumentation to. At the end of

the process the IR is compiled back to binary code and a new instru-

mented executable is generated.

• Symbolization: The process of transforming a binary into a reassem-

blable assembly listing and applying instrumentation on it. Since this

is the method used by RetroWrite-ARM, we will go more detail of how

it works in the next section.

A more comprehensive report of all the different techniques can be found in

a recent survey about binary rewriting by Wenzl et al. [33].

2.1.2 Applications of binary rewriting

The applications of binary rewriting are multiple and can be summarized as

follows:

• Cross ISA binary translation: A binary translator is a special software

that mimics the behaviour of a device while executing on a different

device. Emulators use binary rewriting to translate system calls, in-

structions, memory access and all the other execution primitives from

one processor architecture to another. An example of this would be

QEMU [3].

• Optimization: In the domain of high performance computing, having

a way to patch subtle things like cache misses or timing anomalies in

very long running tasks without the need to restart the whole program

is of special interest. In such situations, binary rewriting is a solution

for run-time patching, as shown by DynInst [4] or Frida [13].

9

2.2. Dynamic and Static Instrumentation

• Profiling: Having an in-depth look during the execution of a binary

by inserting profiling or tracing instructions in the middle of its code

can prove to be particularly useful in many applications, like catching

memory leaks (e.g., Valgrind [23]), coverage information for fuzzing

(e.g., AFL-QEMU [35]) and more.

• Hardening: This is by far the most popular use case of binary rewrit-

ing, as many times we are forced to use software with the absence of

source code, with no vendor support, or with deprecated build tools

that make recompilation impossible. Binary rewriting can be used to

apply security measures such as adding stack canaries, implement-

ing address layout randomization schemes and memory sanitization

to make exploitation substantially harder. Closed source software and

lack of vendor support is so widespread that there are already many

binary rewriting tools on x86 that are aimed at hardening executa-

bles. Examples of such software are Stackguard [8] (that supports the

insertion of stack canaries) or RetroWrite-x64 [11] (that implements a

memory sanitization pass to prevent heap corruptions).

2.2 Dynamic and Static Instrumentation

In this section we will analyze the difference between the two different bi-

nary rewriting approaches, namely dynamic and static instrumentation.

2.2.1 Dynamic instrumentation

Dynamic rewriters modify and instrument the code of the target binary

during runtime. Usually, the target binary is executed in a controlled en-

vironment side by side with the rewriter engine, which patches instructions

and fixes references on the go. Sometimes the rewriter engine leverages the

operating system’s primitives to control the execution of the target, like us-

10

2.2. Dynamic and Static Instrumentation

ing the ptrace system call on Linux, but there are notable cases in which

the rewriter engine comes with its own instrumentation runtime (e.g., Dy-

namo [2]) or implement a full featured virtual machine (e.g., STRATA [26]).

The big advantage of dynamic rewriters is the additional information that

is available at run time, like the path that the execution has taken, or the

contents of the registers. Furthermore, dynamic rewriters can avoid analyz-

ing the whole binary at once, as they can just focus on the part that is being

currently executed, making them scalable to arbitrarily large programs.

However, the additional runtime information comes at a high performance

cost: running the rewriter engine alongside the target binary is expensive,

and the frequent context switches the CPU must perform to execute both

processes make the performance even worse. The total overhead for an

instrumentation pass like memory sanitization for a dynamic rewriter like

Valgrind is an order of magnitude higher [11] than the overhead introduced

by source-level memory sanitization.

2.2.2 Static instrumentation

Static rewriters process the target binary before execution, and produce as

output a new binary with all the required instrumentation included. The

overhead introduced is usually very low, and execution speeds are com-

parable to compile-time instrumentation. Furthermore, static rewriters are

able to add complex instrumentation that is computationally expensive to

introduce, as since it is done statically before execution, it won’t introduce

unnecessary delays at runtime.

Without runtime information, to correctly perform instrumentation static

rewriters need to rely on complex static analysis, which is inherently im-

precise and often needs to rely on heuristics. The common disadvantage of

static rewriters is that they do not scale well on large binaries or binaries

11

2.3. Symbolization

that do not follow standard patterns. In fact, virtually no static rewriter

supports packed binaries or self-modifying code, as they are too complex

to statically analyze. Moreover, many static rewriters struggle even with

binaries produced by deprecated compilers or with aggressive optimization

flags.

More recent static rewriters such as Ramblr [31], Uroboros [32], and RetroWrite-

x64 rely on symbolization, which works around the rigid structure of binaries

by substituting hard coded references with assembly labels. RetroWrite-

x64’s approach is particularly interesting in the fact that it avoid heuris-

tics to differentiate between scalars and references by focusing on position-

independent executables (PIE).

2.3 Symbolization

The symbolization technique is a special form of code generation that focuses

on the output of reassemblable assembly that can be directly fed to a generic

assembler to produce the instrumented executable. Listing 2.1 highlights an

example of this process .

Symbolization works by transforming all reference constants in the exe-

cutable (both in the code and data sections, including relative branches)

with assembly labels, in such a way that pointers and control flow will re-

solve correctly even after new instructions are inserted in the middle of the

code. The usefulness of symbolization relies in the fact that many existing

tools can be applied to insert instrumentation or analyze the symbolized

assembly.

The symbolization approach is usually defined as being zero-overhead, as

the generated executable does not incur in more overhead other than the

time it takes to execute the inserted instrumentation (unlike other methods,

12

2.4. Examples of code instrumentation

like trampolines, where for each instrumentation location two additional

branches need to be executed).

Originally, symbolization was introduced by Uroboros [32], and was later

used by ramblr [31] and RetroWrite-x64 [11].

0x400: adr x0, 0xab0000

0x404: cmp x1, 20

0x408: b.eq 4

0x40c: ret

0x410: ret

.LC400: adr x0, .LCab0000

.LC404: cmp x1, 20

.LC408: b.eq .LC410

.LC40c: ret

.LC410: ret

Listing 2.1: Assembly in the original binary (left), and after symbolization (right)

2.4 Examples of code instrumentation

In this section we will go into more detail on a very common use-case of

instrumentation, fuzzing, and explain AdressSanitizer, the instrumentation

pass we implemented in the ARM port of RetroWrite-ARM.

2.4.1 Fuzzing

Automatic vulnerability discovery techniques are getting a lot of traction

lately, mostly because software is getting ever more complex and large, and

manual analysis and auditing do not scale. Fuzzing is certainly one of the

most interesting automatic vulnerability discovery techniques. It relies on

the semi-random generation of test cases to give as input to a target binary,

trying to find a specific input that makes the binary get into an invalid or un-

defined state, as it is a good indicator of a possibly exploitable vulnerability.

This technique got even more popular after the release of AFL [35], a fuzzer

that relies on coverage information to generate new test cases to maximize

the amount of instructions tested by each new input, and Honggfuzz [29], a

modern fuzzer used to efficiently test APIs thanks to its innovative persistent

fuzzing feature.

13

2.4. Examples of code instrumentation

Most state-of-the-art fuzzers rely on instrumentation to improve vulnera-

bility discovery, as it makes the fuzzing process much more efficient. In

particular, some of the most popular instrumentation passes used to speed

up fuzzing are the following:

• Coverage information: Coverage information helps the fuzzing engine

by monitoring the execution path taken for each input test case. In this

way, the fuzzing engine can generate inputs with the aim of maximiz-

ing the amount of code executed by each test case, increasing the prob-

ability of finding bugs. Coverage information is commonly obtained

by inserting monitoring instrumentation at the start of each function

or before each branch instruction.

• Memory Sanitization: This instrumentation pass adds a check before

each instruction that reads or writes to memory to verify that the mem-

ory access does not result in a stack or heap overflow. Originally de-

veloped to debug memory corruption errors, memory sanitization has

seen widespread use in fuzzing engines as it can halt execution and

report an error as soon as a memory corruption is detected.

2.4.2 ASan

AddressSanitizer, or ASan in short, is one of the most common static memory

sanitization checks that can be added to a binary through a compiler pass,

which can be found in both the clang and gcc family of compilers. This

compiler pass helps finding bugs by actively checking for memory corrup-

tions, hooking calls to libc’s free and malloc functions. ASan is not only

used by developers to help debug their code, but it is also extensively used

by fuzzers, as ASan will detect a memory violation as soon as it happens,

letting the fuzzer know earlier and with more reliability when a bug was

found (otherwise, the fuzzer has to wait that the memory corruption causes

a crash).

14

2.5. The ARM architecture

ASan works by introducing a new region of memory called shadow memory,

with a size of exactly 1/8 of the whole virtual memory available to a process.

By keeping track of each call to malloc and free, ASan stores in the shadow

memory a compressed layout of the valid memory in the original virtual

space, and sets up red zones to highlight invalid or freed memory. Those red

zones trigger a security violation and abort the process as soon as they are

accessed. Despite its non-negligible overhead (Around 73% on average [27]),

ASan is widely used thanks to the absence of false-positives, and for its

usefulness in detecting memory corruption vulnerabilities which are still

commonly found in C/C++ codebases.

2.5 The ARM architecture

We will provide a short summary of what are the main differences between

x86 and ARM, with particular focus on the ones that proved to be source of

non trivial problems during the development of RetroWrite-ARM.

• Fixed-size instruction set: Contrary to x86, the ARM instructions are all

of the same size, fixed to the value of 4 bytes. A consequence of this

is that a pointer cannot fit into a single instruction. To store a pointer

in a register in ARM, there are two main options: the first is using a

region of data where the pointer is hard-coded at compile time, called

a literal pool; the second one is building the pointer in a multi-stage

fashion by using arithmetic operations. While the first one is easier,

it is also less performant, and compilers will always resort to the sec-

ond when possible. This makes recovering information about global

variable accesses very hard.

• Jump table compression: On x86, jump tables are stored as list of pointers

in a data section (usually .rodata), with one pointer for each case

of the jump table. Instead, on ARM, jump tables are stored as offsets

15

2.5. The ARM architecture

from the base case. This is because the compiler compresses the jump

table, and in most cases a single byte is enough to store the offset

from the base case to for each case of the jump table. This is the

source of many problems for static rewriting: first of all jump tables are

harder to detect, as on x86 scanning the data sections for arrays of valid

instruction pointers was a quite reliable way of detecting jump tables,

while on ARM they are indistinguishable from random bytes; secondly

inserting too much instrumentation between cases of the same jump

table could lead to the offset not fitting into a single byte anymore, and

breaking the whole jump table structure in memory. Finally, extracting

the number of cases of a jump table is quite harder in ARM, since it is

impossible to scan cases until an invalid pointer is found, as like stated

before, jump table entries in ARM are indistinguishable from random

bytes.

• Discontinuities in immediates: Some ARM instructions, like “add”, support

having immediates as one of the operands. However, they do not ac-

cept a standard range of immediates like in x86, but instead a specific

set of values that may not be continuous. For example the “add” in-

struction can use only immediates that can be expressed with a value

of 8 bits scaled by a “ror” with a 4 bits operand.

• Alignment issues: The stack pointer register “sp” must always be aligned

to 16 bytes. Failing to do so will trigger a SIGBUS error and crash the

application.

• No push/pop: There are no instructions in aarch64 equivalent to the x86

push/pop. Instead, a push is performed by storing a register on the

stack and manually decreasing the stack pointer, like “str x0, [sp, #-16]!”.

Similarly, a pop can be performed like this “ldr x0, [sp], #16”.

• Multiple register stores/loads: The aarch64 architecture supports saving

16

2.5. The ARM architecture

and loading two registers at once from memory with instructions such

as “stp” and “ldp”. They are very often used by programmers and

compilers thanks to the performance gain.

• Peak performance vs energy efficiency: While x86 is aimed towards max-

imising performance and speed, one of the main objectives of the de-

sign of the ARM architecture is maximising energy efficiency. This is

the reason behind the simplicity of the instruction set, as the CPU can

be smaller and less complex compared to x86 — and, ultimately, less

transistors translate to less power consumed.

• Not enough mature tools: The popularity of ARM CPUs is still relatively

new and the tooling is not mature enough, as in fact we found bugs in

both the disassembler we chose to use (Capstone [5]) and the debugger

(GDB)

17

Chapter 3

Design

We will now go over the design goals of RetroWrite-ARM, we will explain

which were the key issues that we had to face due to the quirks of the ARM

architecture, and the solutions we adopted to overcome these problems both

in the symbolization and in the instrumentation parts of RetroWrite-ARM.

3.1 Goals

Our goal is to develop a zero-overhead binary translator for aarch64 exe-

cutables that enables powerful translation and overcomes challenges spawned

by the ARM ISA. It should also support COTS software and scale well to large

binaries. Finally, its implementation should be modular in order to avoid

limiting any kind of instrumentation.

3.2 System architecture

RetroWrite-ARM follows the same structure as RetroWrite-x64 and is di-

vided into two main components: the symbolizer and the instrumentation

passes. The symbolizer takes care of parsing and analyzing a binary, substi-

tuting every reference in the target with assembly labels, plus some minor

tasks to keep the original functionality of the binary intact. Listing 2.1 shows

18

3.2. System architecture

Figure 3.1: Overview of the structure of RetroWrite-ARM

the output of the symbolization process on a small example assembly snip-

pet.

One or more instrumentation passes can be enabled to apply transforma-

tions to the resulting binary. For now, only a single pass is implemented

(BASan), but many more can be easily added.

3.2.1 Differences with RetroWrite-x64

RetroWrite-ARM uses the same approach as RetroWrite-x64 for parsing the

executables, although with different implementation details to support the

ARM architecture (e.g., different handling for the relocations). The technique

to distinguish between references and scalars introduced in RetroWrite-x64

is also the same.

Since this document focuses on the new challenges that the ARM architecture

introduced, we will not go into details about the above algorithms, and point

the reader to the original RetroWrite-x64 paper [11] for further reference.

The novelty in RetroWrite-ARM relies in the additional static analysis meth-

ods that we had to develop to support detection of pointer constructions

and jump tables. To the best of our knowledge, our work is the first at-

tempt to generate symbolized enlarged jump tables and symbolized pointer

19

3.3. Key Issues

constructions. In the next section we will go into detail about the above

challenges and how did we solve them.

3.3 Key Issues

The outstanding challenges of statically analyzing and instrumenting ARM

binaries can be summarized as follows:

• Detecting and fixing pointer constructions.

• Detecting and symbolizing jump tables.

• Supporting extensive instrumentation by enlarging jump tables.

In the following pages we will get into detail for each one of those issues,

and explain the reasoning behind our solution.

3.3.1 Pointer construction

The aarch64 instruction set is defined as fixed size, because every instruction

is large exactly 4 bytes. This makes the CPU design simpler, helps keeping

memory always aligned, and permits the CPU to fetch multiple instructions

at once, since decoding is not necessary to determine instruction bound-

aries. However, despite the many advantages of this characteristic, there are

some drawbacks too, including not being able to store a pointer in a single

instruction (as pointers have a size of 8 bytes). The aarch64 ISA provides

two main solutions to this problem.

The first one consists in storing the pointers in a special read-only region

of memory, called a literal pool, and then load those pointers into a registers

using the special construct “ldr <reg>, =pointer”, a pseudo-instruction that

the assembler will translate with the correct memory address once pointer

has been stored in a literal pool. Since all “ldr” instructions are PC-relative,

and since the “ldr” instruction keeps 21 bits available to store the offset from

20

3.3. Key Issues

the PC, the assembler will store pointer in a literal pool which is in the± 1MB

range of the “ldr” instruction. While this is a simple and straightforward

approach, very useful in the case of hand-written assembly, this requires

an additional memory access that may impact performance in the long run.

Furthermore, the assembly will fail if it is not possible to store a literal pool

in the given range, such as in the case of a function larger than 2MB. In that

case, it is up to the programmer to find a suitable spot for the literal pool,

by manually specifying its location with the .ltorg assembly directive. It

is often recommended to store literal pools directly after non-conditional

jumps to avoid stepping over them during execution [20].

The second solution is to build pointers using multiple instructions and ba-

sic arithmetic primitives. aarch64 provides instructions such as “adrp <reg>, pointer”,

which loads the base page of a pointer into a register. It is a PC-relative in-

struction, and targets pointers in the ± 4GB range. In other words, the

“adrp” instruction can point only to memory locations that are 4KB aligned.

Usually the instruction can be followed by an “add”, a “sub” or an offset-

based load such as “ldr <register>, [<base_page>, offset]”. This second

way, while more contrived and harder to read, is faster than the first one

as it does not require a memory access, and also often benefits from custom

hardware optimizations (such as in the Cortex A72, one of the most common

ARM CPUs [7]).

The global variable problem

For the reasons stated above, compilers generally use pointer constructions

instead of literal pools when the code needs to access a global variable, pre-

ferring performance over assembly readability. Having each pointer value

separated in two different instructions makes the static analysis of a binary

substantially harder. Furthermore, compiler optimizations frequently ex-

acerbate the difficulty of analysis by reusing parts of some pointer values

21

3.3. Key Issues

to build new ones, or reordering instructions around in such a way that

a pointer can be built on two instructions which are kilobytes away from

each other. In some extreme cases, by enabling the -O3 optimizations, we

found instances of pointers built on two instructions that were on different

functions, due to the compiler optimizing a macro in the C source code.

In the symbolization process (that will be explained in detail later), we need

to know the value of every pointer used in the program, in order to correct

it when we will add instrumentation later on. Thus we are required to

develop an analysis technique that lets us recover the value of every single

global pointer used in the binary. We will now shortly describe the ideas

behind the solution we implemented.

Our solution for the global variable problem

At first, some basic static analysis is performed on the binary, in order to

recover functions, control flow, basic blocks and disassembly of the .text

section. After this, we scan the disassembly for each possible instance of

pointer building in the binary. After analyzing common compiler patterns,

we found out that the “adrp” instruction (which loads the base page address

of a pointer) is an indicator of a possible start of a pointer building process.

After collecting all the possible instances of pointer building, the next step

is to find out the final pointer value of each one. This turned out to be an

extremely difficult task, as we soon found out that there are too many ways

of how a pointer can be built. We implemented a pattern-matching solution

at first, trying to detect common compiler patterns for pointer building;

while we correctly found out the value of the vast majority of pointers,

a single mistake could make the binary crash, and our solution was not

working on binaries of large sizes, as we inevitably failed to parse at least

one or two edge-cases.

22

3.3. Key Issues

We later shifted to a different approach: instead of trying to find exact value

of a pointer by pattern matching, we take the set of all possible sections a

pointer could have and exclude wrong values until possible. Over 99% of the

times, this approach leaves only a single section. We then need to symbolize

only the initial “adrp” and keep the offsets from the relevant section exactly

the same as they were in the original binary to make sure that any pointer

built with that “adrp” will resolve correctly. The rest of the times, we fall

back to the old pattern matching solution.

This final solution scales really well, as proved by the fact that we rewrote

very large binaries and successfully ran them through long benchmarks. For

more details on how the exclusion algorithm works, see the next chapter,

“Implementation”.

3.3.2 Jump table target recovery

There is a big difference in how jump tables in ARM are implemented com-

pared to x86. In fact, in x86, a jump table is represented through a list of

code pointers in the .rodata section. The assembly generated by the com-

piler will simply load the pointer from the list indexed by the number of the

case that is going to be executed, and jump to it.

On ARM, things are different: jump tables are stored as a list of offsets from the

base case (case number 0) in memory. The compiler generates assembly that

fetches the correct offset based on the case number from the list in memory,

adds the offset to the base case, and jumps to the resulting value. Listing 3.1

shows an example of jump table access in aarch64. The first two instructions

build a global pointer to where the jump table is stored in memory. In line

3 the offset to the corresponding case is loaded into register “w1”, and then

later added to the base case “x0” on line 5.

Furthermore, jump tables in aarch64 are complicated by the fact that they

23

3.3. Key Issues

1 adrp x0, <jump_table_page_address>

2 add x0, x0, <jump_table_page_offset>

3 ldrb w1, [x0, w1, uxtw]

4 adr x0, <base case address>

5 add x0, x0, w1, sxtb 2

6 br x0

Listing 3.1: Example of a jump table in aarch64

are often compressed in memory. Since they store offsets, not pointers, and

commonly jump table cases are very close to the base case, compilers usually

avoid using the full 8 bytes of memory for each case (which would be normal

in x86), but will use less if possible. For instance, if all offsets are less than

256, the compiler will use a single byte in memory to store each case.

Detection of jump tables

The first problem we had to face was the discovery of jump tables. While

they have a very distinct pattern (a load from memory, followed by some

arithmetic, and then an indirect jump), many other constructs share similar

patterns (e.g., using a callback in a struct). We found out that a reliable

way of detecting them is by backward-slicing every time the disassembler

encountered an indirect jump, and then verifying if the value of the register

used for the indirect jump could be represented with an expression which

could be resolved statically and matched a very defined pattern (load 1/2/4

bytes from memory, load a base address, add the offset and then jump to

the result).

To represent the value of a register as an expression, we developed a simple

pseudo-emulation engine that steps backwards from a given instruction, fol-

lowing control flow and building step by step the resulting expression, sim-

ilar to what a dumbed-down symbolic executor would output. The pseudo-

emulation engine is limited, supports circa 20 instructions, as emulating ARM

was out of the scope of the project and we only needed it for jump table

24

3.3. Key Issues

detection. A detailed explanation of how it works is in the next chapter.

Detection of jump tables size

Another problem that quickly arose from the peculiarities of ARM jump ta-

bles is that it is much harder to estimate the number of cases that a jump

table supports, compared to x86. In fact, in x86, simple heuristics such as

scanning memory for continuous sections of valid instruction pointers until

an invalid one is found can be a valid heuristic. However, as stated before,

in ARM jump tables are indistinguishable from random bytes, so it is impos-

sible to use heuristics to understand the bounds of a particular jump table

in memory.

We found that backward slicing is again a robust solution here too. After

detecting a jump table, we can identify the instruction that takes care of

loading the offset from memory, and from there we mark the register that

holds the value of the number of the case that is going to be executed.

Backward-slicing until a comparison operation is performed on the marked

register, bounding the number of cases to an absolute number, turned out

to be a very reliable solution.

3.3.3 Enlarging jump tables

Another problem spawned from how jump tables are represented in ARM

comes up when instrumenting a function that contains a jump table. In fact,

it is very likely that adding too much instrumentation inside a single case

could overflow one of the offsets that stored its distance from the base case.

Especially when maximum compression is used and offsets are stored in a

single byte, it is very common to overflow multiple of them even with light

instrumentation.

This was one of the hardest problems to fix, and we considered the following

25

3.3. Key Issues

solutions:

• Expand the jump table in memory. Enlarge the .rodata section and

move everything to make space in memory for the expanded jump

table. While possible, this would have been be a drastic change that

was not scalable or easily implemented.

• Create a new jump table in a new section, and patch the pointer build-

ing code at the start of the jump table access code. While this was

the easiest solution to implement, we discarded it because of the addi-

tional space required and its poor scalability.

• Divide all the offsets by the same constant value. Normally, all offsets

of a jump table represent the distance between a case and the base case

expressed in bytes divided by 4. This is because each instruction is 4

bytes long, and it would not make sense to point inside an instruction.

In fact, in Listing 3.1, line 5, we can see how the offset is shifted by 2

to the left (so multiplied by 4). However, we can use the same tech-

nique the compiler uses and store offsets divided by 8, 16 or more, and

changing how much the offset is shifted to the left before being used,

thus enabling us to store larger differences in a single byte.

The trade-off with this approach is that offsets can no longer point

to a single instruction, but to a block of 2, 4 or more instructions,

depending on how much enlargement was needed. To make sure that

each offset points to the right instruction, some light nop-padding is

applied between cases to make sure that alignment is correct every

time.

We ended up using the last solution, as even if it was slightly more complex

to implement, it would help us keep the original memory layout of the

binary, which is a very desirable property in binary rewriting.

26

3.3. Key Issues

3.3.4 Control Flow broken by instrumentation

When adding substantial amount of instrumentation to a binary, some pc-

relative branches can break, like the instruction “cbz”, which cannot jump

to addresses farther than 1MB.

In this cases we fix the relevant instruction by making them point to a some

additional instrumentation containing a trampoline to the original target of

the branch.

3.3.5 Instrumentation register saving

We designed RetroWrite-ARM to support any kind of instrumentation, with-

out sacrificing performance and functionality. We realized though that many

different kinds of instrumentation require some intermediate calculations to

be saved in registers. This was causing noticeable overhead in the instru-

mentation, as registers needed to be saved on the stack and later restored at

every instrumented location.

To avoid this additional overhead, we implemented a static analysis of reg-

ister usage for every function, with instruction-level granularity (i.e., the

result of the analysis is the set of registers that can be freely used without

saving them for every instruction inside a given function). The instrumenta-

tion can then use the set of free registers without worrying about hindering

the original functionality of the binary.

27

Chapter 4

Implementation

In this chapter we cover the implementation of the rewriter and of BASan,

the memory sanitization instrumentation pass. We will also share details on

the optimizations we implemented to minimize instrumentation overhead.

4.1 Symbolizer

Symbolization requires detection of every single pointer and control flow

mechanism in the binary. In aarch64, this may prove to be harder than

it looks, as pointer construction patterns are difficult to recover and jump

tables are not as heuristics friendly as they are in x86. In the following

subsections we will go over each problem and explain our approach to tackle

it.

4.1.1 Detecting pointer constructions

Standard compilers (clang, gcc) that target aarch64 use a common pattern

for building pointers: an “adrp” instruction, loading the page of the desti-

nation address, and then either an “add” or similar arithmetic instruction to

fix the offset inside the page, or a memory operation like “ldr” or “str” that

include the offset inside the page (e.g., “ldr x0, [x1, 256]”).

28

4.1. Symbolizer

adrp x0, 0xab0000

add x1, x0, 256 ; pointer 0xab100

ldr x2, [x0, 512] ; pointer 0xab200

add x0, x0, 128 ; pointer 0xab080

Listing 4.1: Example of multiple pointers built from the same adrp instruction

adrp x0, 0xab0000

mov x1, x0

add x1, x1, 256 ; pointer 0xab100

Listing 4.2: Example of changing register during pointer construction

We implemented two different approaches and combined them together to

successfully recover pointers in aarch64 binaries. The first one is based on

pattern matching. We first build a list of possible pointer building locations,

enumerating all instances of the “adrp” instruction. Next, we find all “add”,

“ldr”, or “str” instructions (or their variants) that use the register that was

partially built with the “adrp”, and try to recover the original pointer by em-

ulating the arithmetics involved in those instructions. This approach alone

was not enough because of the following difficulties:

• Multiple pointers built with the same “adrp”: Listing 4.1 shows how

sometimes the same “adrp” page loading instruction is used for mul-

tiple pointer constructions, sometimes very far away from each other

• Moving base page register: another difficulty was that sometimes the

register used to store the base page changed in the middle of the

pointer construction, like in Listing 4.2

• Base register stack saving: in very large functions, sometimes the base

registers were loaded at the start and saved on the stack, to be later

restored and used for pointer building. An example is present in List-

ing 4.3

We implemented a light data flow recovery algorithm that statically ana-

29

4.1. Symbolizer

adrp x0, 0xab0000

str x0, [sp, -16!]

...

ldr x3, [sp, 16!]

add x3, x3, 512 ; pointer 0xab200

Listing 4.3: Example of base page register stack saving

lyzed the control flow and the stack usage of a given function, following

around the register used by the “adrp” and checking for its usage, to address

all the difficulties stated above. However, it is particularly hard to support

every single edge case, and missing a single pointer symbolization is fatal

and will cause a crash when the pointer is dereferenced (which sometimes

happens a while after the pointer is built, and can be very time consuming

to detect and debug). While this pattern matching approach alone worked

with the vast majority of instances of pointer construction, it was insufficient

to completely symbolize all pointers and often failed on large binaries.

Our second approach took advantage of the fact that RetroWrite-ARM does

not instrument data sections, and the vast majority of global variables point

to a data section. Instead of trying to parse the pointer building patterns,

we try to guess which section of the original binary an “adrp” could be

pointing to. Since the “adrp” loads a base page, and a page offset is added,

the sections that can be addressed by a single pointer construction are those

that overlap the “adrp” address with a± 1 KB range. Since all sections except

.text are not instrumented, if we are able to narrow down the possible

target of a pointer construction to a single section, we can symbolize the

pointer by just adjusting the starting “adrp” to correctly address the same

symbolized section as in the original binary, since offsets used by “add”

or “ldr” will stay the same. For example, if we encounter the instruction

“adrp x0, 0xab000” and the only section close enough is the .bss that starts

at address 0xab256, we can symbolize every pointer construction on “x0” by

30

4.1. Symbolizer

changing the above “adrp” to “ldr x0, =(.bss - 256)”.

This second approach is more stable, as it does not incur in any of the

problems stated above. However, it was not always applicable, as espe-

cially in smaller binaries multiple sections could be in the ± 1 KB range

from the “adrp” destination address; in that case, we used some simple data

flow analysis to exclude as many sections as possible. We found out that

in around 99% of cases we are able to use this “adrp”-adjusting approach

without needing to do any heuristics at all. In the case we are not able to

determine which single section the “adrp” is pointing to, we fall back to the

first pattern matching based approach.

4.1.2 Symbolization of pointers

After detection of a pointer construction in the target binary, it is still not

trivial how to symbolize a pointer. There are two solutions to this problem:

using literal pools and using pointer construction.

Literal pools

A literal pool is a special region of memory in a binary that stores absolute

addresses. It is widely used in ARM to overcome the challenge of not being

able to store a pointer in a single instruction.

The ARM assembly specification [18] states that the assembler will store a

pointer in a literal pool when using the following construct: ldr x0, =<pointer>.

This pseudo-instruction will be assembled with a pc-relative load to the

nearest literal pool that contains the full pointer address. The location of

the literal pool must be manually specified in assembly through the .ltorg

directive. Usually, literal pools are stored between functions in the .text

sections. Since the “ldr” pc-relative load can only target addresses in the ±

1 MB range, literal pools must be stored inside functions if they are larger

31

4.1. Symbolizer

than 2 MB.

In our first implementation we used literal pools to symbolize pointers, but

we detected noticeable overhead introduced even without instrumentation

added. The runtime of symbolized binaries without instrumentation was

around 5% higher when compared to the original binaries. The reason be-

hind the additional overhead is twofold: first, each pointer retrieved through

literal pools requires a memory access each time; secondly, literal pools oc-

cupy precious space in the .text section causing more cache misses than

necessary.

Pointer construction symbolization

To avoid the overhead introduced by the usage of literal pools, we decided to

use pointer construction ourselves. The symbolization of a pointer construc-

tion is composed of two parts: the symbolized “adrp” base page loading and

the symbolized “add” for the page offset. An example of such process can

be found in Listing ??. The “adrp” is symbolized by just substituting its ar-

gument address with the symbolized label. The page offset part, instead, is

symbolized through a special assembler directive that evaluates to the last

12 bits of the specified assembly label (and 12 bits are exactly enough to

specify the offset inside a page).

0x400: adrp x0, 0xab000

0x404: add x0, x0, 256 ; pointer to 0xab100

.LC400: adrp x0, .LCab100 ; base page

.LC404: add x0, x0, :lo12:.LCab100 ; page offset

Listing 4.4: Example pointer construction in the original binary (above) and symbolized pointer
construction (below)

32

4.2. Jump Tables

4.2 Jump Tables

Switch statements in ARM binaries are stored as a list of offsets, instead of

absolute addresses like in x86. This makes symbolizing them particularly

tricky. First of all, detecting them is not easy: listing 4.7 shows how they

do not have a particular pattern in memory. In this section we will go over

what was our approach to finding them and how did we symbolize them

without breaking their functionality.

0x400: adrp x0, 0x8000

0x404: add x0, x0, 3

0x408: ldrb w1, [x0, w1, uxtw]

0x40c: adr x0, 0x418

0x410: add x0, x0, w1, sxtb 2

0x414: br x0

0x418: movz x0, 1 ; case 0,1,2

0x41c: ret

0x420: movz x0, 10 ; case 3

0x424: ret

0x428: movz x0, 100 ; case 4

0x42c: ret

0x8003: .byte 0 ; case 0

0x8004: .byte 0 ; case 1

0x8005: .byte 0 ; case 2

0x8006: .byte 8 ; case 3

0x8007: .byte 16 ; case 4

Listing 4.5: Left: code for a performing a switch. Register w1 holds the case number that is
going to be executed. The offset is loaded at 0x408, which is added to the base case address
(loaded at 0x40c) and then jumped into (0x414).
Right: corresponding jump table in memory, with 5 cases each occupying a single byte in memory.
Cases can be repeated, and are impossible to distinguish from other data in memory.

4.2.1 Detection of jump tables

Our algorithm to detect a jump table pattern works as follows:

• Recover the complete control flow of each function, using the linear

sweep technique.

• Mark all indirect jump locations, identified by “br” instructions.

• For each “br” indirect jump, backwards-slice the code to find all paths

that may lead to the “br”, with a maximum path length of 50 instruc-

tions. This upper bound is generous (in all the cases we analyzed

33

4.2. Jump Tables

15 instructions were enough) and prevents computationally expensive

path explosions.

• Reverse-emulate every path, and store every possible (symbolized)

value that the register of the indirect call can have.

• If the value that the register can have is the same for every path, and

corresponds to a jump table symbolic expression, then mark the br

instruction as part of a jump table construct.

To reverse-emulate every path that leads to the indirect call, we implemented

a very limited aarch64 symbolic instruction emulator. It supports around

20 ARM instructions (all those that are common in jump table constructs, plus

arithmetic instructions and a few memory-related ones). Figure 4.6 shows a

very simple example of the output of this emulator (jump table constructs

are often more nuanced and interleaved with other instructions).

After we get the symbolic value of the indirect jump register, we compare it

to the standard jump table expression, which is the following:

base_case_addr + *(jump_table_base_addr + register_case_number * ?) << ?

The symbol ? is a wildcard for any (positive) integer value. base case addr

is the address of case 0 in the jump table. jump table base addr is instead

the address in memory of the jump table offsets. Lastly, register case number

is a register with as value the number of the case that is going to be executed.

Finally, if the indirect call is recognized as a jump table, the last step is

determining how many cases the jump table is made of. We solved this by

backward-slicing from the instruction loading the case number (the “ldr”

at 0x408 in Figure 4.6) and looking for an upper-bound comparison with

a constant value on the register that holds the current case number to be

executed (w1). If the comparison is directly followed by a jump, than we

mark the jump target location as the “default” case and set the number of

34

4.2. Jump Tables

cases of the jump table based on the constant of the comparison. Figure 4.6

shows an example of the output of our emulator when analyzing a “br”

indirect jump.

0x3f8: cmp w1, 128

0x3fc: b.hi .default_case

0x400: adrp x0, 0x8000

0x404: add x0, x0, 3

0x408: ldrb w1, [x0, w1, uxtw]

0x40c: adr x0, 0x418

0x410: add x0, x0, w1, sxtb 2

0x414: br x0

Analyzing 0x414: br x0

x0 = x0

x0 = x0 + (w1 << 2)

x0 = 0x418 + (w1 << 2)

x0 = 0x418 + (*(x0 + w1*1) << 2)

x0 = 0x418 + (*(0x8003 + w1*1) << 2)

Result:

Base case: 0x418

Jump table addr: 0x8003

Case number reg: w1

Number of cases: 128

Shift: 2

Listing 4.6: Above: example of a jump table pattern. Below: output of our symbolic emulator.

4.2.2 Jump Table symbolization

The symbolization of a jump table in memory is done using the assembler’s

support for simple arithmetic on assembly labels. Since on ARM a jump table

is a list of offsets from a base instruction, we symbolize that with differences

between labels. An example of this can be seen in Figure 4.7.

Since the offsets in the symbolized version are calculated with assembly la-

bels, any amount of code can be added between cases, and the assembler

will make sure that the jump table will work correctly. This is one of the

cases where the benefits of using symbolization as a rewriting technique re-

ally shines, as it gives us the freedom of inserting arbitrary instrumentation

35

4.2. Jump Tables

(even by hand) without having to worry about correcting references.

However, there is a catch: adding too much instrumentation could overflow

the value used to store the offset from the base case. In the example in

Figure 4.7, if there are more than 256 instructions between a case and the

base case, the offset will overflow as it is stored in a single byte. In the next

subsection we will cover how we actually support adding arbitrary amount

of instrumentation.

0x8003: .byte 0 ; case 0

0x8004: .byte 0 ; case 1

0x8005: .byte 0 ; case 2

0x8006: .byte 8 ; case 3

0x8007: .byte 16 ; case 4

0x8003: .byte (.LC418 - .LC418) / 4

0x8004: .byte (.LC418 - .LC418) / 4

0x8005: .byte (.LC418 - .LC418) / 4

0x8006: .byte (.LC420 - .LC418) / 4

0x8007: .byte (.LC428 - .LC418) / 4

Listing 4.7: Left: jump table as stored in memory as found in the original binary. Right:
symbolized jump table in the output of RetroWrite-ARM.

4.2.3 Jump Table enlargement

When too much instrumentation between jump table cases is added, the

value used to store the offset from the base case can overflow. To address

this, we implemented support for using a larger divisor when storing assem-

bly label differences. As an example, instead of storing (LC418 - .LC410)

/ 4 like in Figure 4.7, we can store (.LC418 - .LC410) / 8 to fit up to

512 instructions between .LC418 and .LC410. The same reasoning can be

reapplied with higher powers of two.

However, using a divisor higher than 4 means losing precision in the ad-

dresses of the cases we want to represent. Since 4 bytes is the size of each

instruction, dividing by 4 means that every instruction can be targeted; di-

viding by 8 means that only one every two instructions can be targeted. To

avoid having jump table cases not targetable due to the loss of precision, we

insert nop padding before each case in order to make every case aligned and

36

4.3. Instrumentation (BASan)

targetable, with the amount of nops depending on how high is the divisor

(e.g., dividing by 8 means that each case must by 8-byte aligned, so using

up to 1 nop before each case; dividing by 16 means using up to 3 nops, and

so on). Since the number of nops inserted depends on alignment, we leave

this task to the assembler using the “.align” directives.

After changing the divisor, we also need to change the indirect jump calcula-

tions in the binary’s code to match the new shift value. Usually, the offset to

be added is multiplied by 4 using an instruction like “add x0, x0, w1, sxtb 2”

(which shifts left by 2), as can be seen in Figure 4.6. We change the shift value

according to how high we set the dividend in the symbolized jump table (the

add instruction support shifting left up to 4, but we insert a standard “lsl”

instruction before if it’s higher than 4).

Listing 4.8 highlights an example of this.

4.3 Instrumentation (BASan)

The ASan instrumentation was designed to be compatible with the Ad-

dressSanitizer library provided by Google, libasan. We carefully selected

shadow memory offsets and sizes to match those included in libasan. The

library will hook on each call to malloc and free, writing in the shadow

memory the available bytes that can be used. RetroWrite-ARM takes care

of finding each access in memory and inserting instrumentation just before

each access to check the relevant bytes of shadow memory and error out in

case an overflow or other memory corruption was found.

Listing 4.9 shows the ASan checking algorithm in high level. To implement it

as an instrumentation pass, we manually wrote assembly code that matched

its functionality and could be adapted to both reads and stores. Different

versions of ASan snippets were developed depending on the size of the

37

4.3. Instrumentation (BASan)

.LC400: adrp x0, .LC8003

.LC404: add x0, x0, :lo12:.LC8003

.LC408: ldrb w1, [x0, w1, uxtw]

.LC40c: adr x0, .LC418

.LC410: add x0, x0, w1, sxtb 4

.LC414: br x0

.align 4

.LC418: movz x0, 1 ; case 0,1,2

.LC41c: ret

.align 4

.LC420: movz x0, 10 ; case 3

.LC424: ret

.align 4

.LC428: movz x0, 100 ; case 4

.LC42c: ret

...

...

0x8003: .byte (.LC418 - .LC418) / 16

0x8004: .byte (.LC418 - .LC418) / 16

0x8005: .byte (.LC418 - .LC418) / 16

0x8006: .byte (.LC420 - .LC418) / 16

0x8007: .byte (.LC428 - .LC418) / 16

Listing 4.8: Example of enlarged symbolized jump table. The shift value at 0x410 is increased
from 2 to 4, and the divisor at 0x8003 is increased from 4 to 16. Before each case, an .align

4 assembly directive is inserted, as each of them need to be aligned to 16 bytes.

byte shadow_value = *(MemToShadow(address));

if (shadow_value) {

if ((address & 7) + AccessSize - 1 >= shadow_value) {

ReportError(address, AccessSize);

}

}

Listing 4.9: AddressSanitizer checking algorithm example implementation

store/load, to ensure maximum efficiency and avoid wasting calculations at

runtime. Listing 4.10 shows an example of an instrumented instruction.

Unfortunately, the BASan instrumentation pass is not completely equiva-

lent to its source based counterpart, in fact we can highlight the following

differences:

• Missing global variable bounds checking: without the source code, it is

impossible to distinguish boundaries between global variables in data

38

4.3. Instrumentation (BASan)

.ASAN_ENTER:

; saving registers on the stack

stp x17, x16, [sp, -16]!

stp x15, x14, [sp, -16]!

str x13, [sp, -16]!

; saving condition flags register

mrs x13, nzcv

; loading from shadow memory

mov x14, 0x1000000000

lsr x16, x1, 3

ldrsh w15, [x14, x16]

; if shadow memory is empty (w15 == 0), continue execution

cbz w15, .LC_ASAN_EXIT

; otherwise, report error and quit

mov x0, x1

bl __asan_report_load16_noabort

.LC_ASAN_EXIT:

; restoring condition flags register

msr nzcv, x13

; restoring registers from the stack

ldr x13, [sp], 16

ldp x15, x14, [sp], 16

ldp x17, x16, [sp], 16

; original instruction

ldp x2, x3, [x1]

Listing 4.10: Example of BASan memory sanitization on a 16-byte memory load

section. For this reason, checks on global variables are missing.

• Missing stack variables bounds checking: similar to above, without

source code it is extremely hard to find boundaries between vari-

ables on the stack. Stackframe bounds checking could be easily im-

plemented (thus providing the same functionality as a stack canary),

but for now BASan has checks only for the heap.

• Number of instrumented locations: ASan used as a compiler pass

is able to prune the checking on a lot of memory accesses, since on

many instances the safeness of a memory access can be determined

at compile-time with the source code at hand. However, RetroWrite-

ARM works only on binaries and thus is forced to instrument all mem-

39

4.3. Instrumentation (BASan)

ory accesses.

Despite the following limitations, the BASan instrumentation pass provides

the same core functionality of the original ASan compiler pass (memory

sanitization on the heap), and with very little additional overhead.

Optimization: register savings

The snippets of assembly used to implement ASan memory checking require

some temporary register usage to store intermediate calculations, and thus

require special precautions before inserting them in the middle of a binary.

Our first approach was to save the values of each register we were planning

to use on the stack, and then restore the old values as the last step of the

instrumentation. However, we quickly realized that those frequent memory

accesses were introducing noticeable overhead.

We then switched to performing a static analysis of register usage on every

function of the binary, in such a way that at any given instruction we know

which registers can be freely used and which cannot be modified without

hindering the correct execution of the binary. Then, when inserting the

instrumentation, we modify the snippets in such a way that they will try to

use as many ‘free’ registers as possible, while saving the others on the stack.

Of particular note is the saving of the value of register “nzcv”, which holds

the condition flags in aarch64. This register is always saved and restored

at each instrumented location, as all ASan snippets contain a conditional

branch for the error checking.

40

Chapter 5

Evaluation

In this section we validate the claims that we made earlier by performing

experiments. We show that RetroWrite-ARM can symbolize and instrument

ARM binaries and that presents important features such as the following:

• Scalability: support for large binaries.

• Performance: low instrumentation overhead.

• Correctness: instrumentation does not affect original functionality of

the binary.

5.1 Setup and Hardware

We decided to run experiments on two different machines: a low end setup

and a high end setup. Evaluating on machines at opposite end of the perfor-

mance spectrum allows us to highlight differences between the two device

classes. The machines we had available are the following:

• A raspberry Pi 4B, with a Cortex A-72 (1.5GHz) CPU and 4GB of RAM

• An Atlas/A57 (2.4GHz) CPU with 64 GB of RAM

To benchmark the performance of rewritten binaries, we used the C lan-

guage benchmarks of the SPEC CPU 2017 benchmark suite [19]. We focus

41

5.2. Performance

on the C language benchmarks as RetroWrite-ARM does not (yet) support

the symbolization of C++ exceptions or class hierarchy recovery. Table 5.1

shows the list of evaluated benchmarks. All of the benchmarks were run on

both machines, but on the Raspberry some benchmarks were excluded from

the results as 4GB of RAM were not enough to avoid using swap memory,

compromising the experiments. The Atlas machine was generously hosted

by the CloudLab project [6] in their Utah data center.

The benchmarks were compiled with the gcc compiler version 7.5.0 on

Ubuntu 18.04. The following command line flags were used to compile the

baseline benchmark binaries: “-O3 -fgnu89-inline -fno-strict-aliasing”,

in addition to the flags to produce position independent executables. The

“-fgnu89-inline” flag uses GNU semantics for inline functions, and re-

solves issues with duplicate symbols errors during the compilation of the

gcc benchmark. The “-fno-strict-aliasing” flag disables GCC’s aggres-

sive aliasing compilation, and is recommended to be used by the SPEC CPU

manual [28] to avoid problems with the perlbench benchmark.

To demonstrate the scalability of our approach, we rewrite binaries as large

as the gcc benchmark (>10MB), which results in over 125MB of symbol-

ized assembly. We evaluate the performance of the symbolization engine by

running the benchmarks rewritten by RetroWrite-ARM without adding any

kind of instrumentation. We then evaluate the performance of our memory

sanitization instrumentation pass by comparing it against its source based

equivalent (“-fsanitize=address” in the compiler flags), and also against

memory sanitization implemented using a dynamic instrumentation ap-

proach, by using Valgrind with the memory sanitization option (“valgrind

--tool=memcheck”).

42

5.2. Performance

Name Size Stripped size .text size Functions

cpugcc r 63 MB 10 MB 8912092 11799
perlbench r 11 MB 2.5 MB 2070252 2408
imagick r 2.4 MB 2.2 MB 1935340 2187
x264 r 687 KB 645 KB 563836 547
nab r 249 KB 229 KB 194756 235
xz r 244 KB 215 KB 160540 360
mcf r 45 KB 38 KB 30964 46
lbm r 23 KB 18 KB 10508 28

Table 5.1: Name and size of the SPEC CPU2017 benchmarks written in C.

5.2 Performance

5.2.1 Symbolization performance

Figure 5.1 and Figure 5.2 demonstrate that the overhead of reassembled

symbolized binaries is negligible. Table 5.3 shows more detailed results for

the Atlas machine. The average overhead is 0.76%, in line with other state

of the art static rewriters [34] for other platforms.

While the overhead is low to negligible, we want to list the two main causes:

alignment and pointer construction. First, RetroWrite-ARM currently does

not conduct any cache line optimization for code and section layouts. Com-

pilers layout code blocks to maximize code cache hits. Second, each pointer

building instruction in the original code “adrp” is symbolized with two in-

structions (an “adrp” followed by an “add”): so for each global variable ac-

cess the binary makes the CPU will execute an extra clock cycle. Note that,

in practice, this will not cost a full clock cycle as many ARM CPUs have hard-

ware optimizations for adrp+add sequences of instructions [7].

Interestingly, at first we used to have substantial overhead from symboliza-

tion alone. This was at an early stage of the project, where we used literal

pools to symbolize global variable pointer constructions, instead of gener-

ating symbolized pointer constructions ourselves like compilers do, mostly

43

5.2. Performance

Name Static pointer
constructions

Dynamic pointer
constructions

Literal pools
Symbolized

pointer building
perlbench r 34 285 168 797 437 831 19.48% 2.91%
gcc r 9095 1 232 266 305 4.10% 0.95%
imagick r 19 127 16 275 621 901 1.75% 0.30%
nab r 2003 28 193 001 045 0.88% 0.34%
xz r 1087 1 471 854 761 0.33% 0.44%
mcf r 108 7 909 505 1.07% −0.07%
lbm r 90 36 160 0.08% 0.59%

Average - - 4.12% 0.76%

Table 5.2: Overhead of RetroWrite-ARM on the Atlas machine without instrumentation com-
paring the recovery of pointers by using literal pools and by using symbolized pointer building.

because using literal pools was simpler to debug and faster to implement.

However, literal pools introduce an additional instruction (a memory load),

plus they require space in the .text section for the storage of the point-

ers, reducing cache performance. Table 5.2 demonstrates how much the

overhead decreased when we switched to symbolized pointer constructions,

from an average of 4.12% to 0.76%.

The most affected benchmark by the symbolization overhead is perlbench,

and this fact is consistent with our measurements (as perlbench has an

order of magnitude more global variable accesses executed compared to the

other benchmarks,) and is also the benchmark which benefited the most

from the removal of literal pools. A negative overhead is present on the

mcf benchmark, but we consider it small enough to lie inside measurement

error.

5.2.2 Memory sanitization performance

In this section we compare the overhead introduced by RetroWrite-ARM’s

memory sanitization instrumentation and the overhead introduced by adding

memory sanitization during compilation (“-fsanitize=address”).

An overview of the results can be seen in Figure 5.1 for the Atlas machine,

44

5.2. Performance

and in Figure 5.2 for the Raspberry Pi. Both figures show the same pattern:

memory sanitization introduces some overhead but the execution time re-

mains similar to source-based instrumentation. However, we can see how

the Raspberry suffered from a slightly higher overhead with instrumenta-

tion enabled. We think that one of the possible causes of this is that a

low-end system like the Raspberry suffers more from cache misses than a

high-end system (and memory sanitization is a very heavy instrumentation

that increases code size by up to three-fold, substantially degrading cache

performance).

500.perlbench_r

502.gcc_r

505.mcf_r

519.lbm_r

538.imagick_r

544.nab_r
557.xz_r

benchmark

2000

4000

6000

8000

10000

Ru
nt

im
e

(s
ec

on
ds

)

47844 19170

7369

9704 27830 17799 10411

SPEC CPU 2017 benchmark results
Compile flags used: -fno-unsafe-math-optimizations -fno-tree-loop-vectorize -O3

Baseline
Symbolized
Source_Asan
Basan
Valgrind

Figure 5.1: Benchmark runtime on the Atlas machine. The yaxis has been limited at 8000 for
clear depiction of smaller values.

It is interesting to look at detailed results for the Atlas machine in Table 5.3.

We can see that source-based ASAN has a 84.04% overhead on average, but

the overhead varies a lot between individual benchmarks, depending on the

45

5.2. Performance

500.perlbench_r

505.mcf_r

519.lbm_r

538.imagick_r

544.nab_r
557.xz_r

benchmark

2000

4000

6000

8000

10000

Ru
nt

im
e

(s
ec

on
ds

)

51738 9613 9435 37638 21766 12818

SPEC CPU 2017 benchmark results
Compile flags used: -fno-unsafe-math-optimizations -fno-tree-loop-vectorize -O3

Baseline
Symbolized
Source_Asan
Basan
Valgrind

Figure 5.2: Benchmark runtime on the Raspberry machine. The yaxis has been limited at 8000
for clear depiction of smaller values.

amount of memory accesses. For example, perlbench, running an inter-

preter, executes a high amount of memory loads and stores that need to be

individually checked by the address sanitizer each time; in fact, the over-

head is noticeably higher (173.84%). The same holds true for RetroWrite-

ARM’s memory sanitization instrumentation (“Binary ASAN” in Table 5.3):

the overhead is larger in programs that frequently use memory.

On average, binary ASAN is 19% slower than source ASAN (119.61% instead

of 84.04% average overhead). The reasons behind the slowdown are the

following:

• Number of instrumented locations: Without source code available,

RetroWrite-ARM cannot use certain types of analysis that the compiler

uses to determine the safety of certain memory accesses. For this rea-

son, RetroWrite-ARM instruments each memory access, while source

ASAN skips some of them.

46

5.2. Performance

Name Symbolization only Source ASAN Binary ASAN Valgrind

cpugcc r 0.95% 145.80% 196.09% 1729.20%
perlbench r 2.91% 173.84% 260.10% 3377.03%
imagick r 0.30% 71.53% 71.17% 1578.53%
nab r 0.34% 28.57% 27.21% 1110.82%
xz r 0.44% 105.79% 144.76% 1036.57%
mcf r -0.07% 40.77% 83.74% 390.94%
lbm r 0.59% 49.58% 97.31% 715.46%

Average 0.76% 84.04% 119.61% 1429.94%

Table 5.3: Overhead of RetroWrite-ARM without instrumentation and of RetroWrite-ARM
with BASAN instrumentation on SPEC CPU2017 on the Atlas machine compared to the original
benchmark and the original benchmarks compiled with source based ASAN.

• Assembly generation optimizations: RetroWrite-ARM is a straightfor-

ward rewriter and instruments memory accesses by inserting hand-

written assembly snippets. While some optimizations were imple-

mented (register savings), RetroWrite-ARM so far has no peephole

optimizer to reflow the emitted instrumentation.

Still, the slowdown with respect to source ASAN is tiny compared to state

of the art tools. In fact, without source code, the only way of adding mem-

ory sanitization to a binary is through dynamic instrumentation. We ran the

benchmarks using the current state of the art dynamic instrumentation tool

that implements memory sanitization (Valgrind’s memcheck tool [23]), and

plotted the runtime in Figure 5.1 and Figure 5.2. The overhead introduced

by dynamic instrumentation is an order of magnitude higher than the over-

head of binary ASAN, depending on the amount of memory accesses of the

benchmark.

Note that, so far our binary ASAN instrumentation does not detect out of

bounds accesses for global variables and stack accesses. While loads/stores

are instrumented and checked, the underlying memory redzones are not

instrumented due to lack of precise variable information. The length and

scope of globals and stack variables is not determinable in the general case

47

5.2. Performance

and without this information, we cannot check them precisely.

5.2.3 Optimization: register savings

One of the biggest performance improvements in our memory sanitization

instrumentation came from the re-usage of “free” registers without the need

to save them on the stack at each instrumentation location. The impact of

this optimization depends on the amount of registers that our static analy-

sis determines to be “free” at every given instrumentation location. In the

best case scenario (if no registers need to be pushed to the stack and then

restored) 6 less instructions are used for the BASan instrumentation. Fig-

ure 5.1 shows an example of this optimization on an instrumented 8-byte

memory load.

stp x17, x16, [sp, -16]!

stp x15, x14, [sp, -16]!

str x13, [sp, -16]!

mrs x13, nzcv

add x17, x1, 2488

mov x14, 0x1000000000

lsr x16, x17, 3

ldrsb w15, [x14, x16]

cbz w15, .LC_ASAN_EXIT

mov x0, x17

bl __asan_report_load8_noabort

.LC_ASAN_EXIT:

msr nzcv, x13

ldr x13, [sp], 16

ldp x15, x14, [sp], 16

ldp x17, x16, [sp], 16

; original instruction

ldr x1, [x1, #0x9b8]

mrs x13, nzcv

add x17, x1, 2488

mov x14, 0x1000000000

lsr x16, x17, 3

ldrsb w15, [x14, x16]

cbz w15, .LC_ASAN_EXIT

mov x0, x17

bl __asan_report_load8_noabort

.LC_ASAN_EXIT:

msr nzcv, x13

; original instruction

ldr x1, [x1, #0x9b8]

Listing 5.1: Left: Instrumented 8-byte memory load. Right: Instrumented 8-byte memory load
with register savings turned on (best case scenario).

Table 5.4 shows in detail the overhead difference in the memory sanitization

instrumentation when register savings are disabled. We can see how register

savings are critical to the performance of the instrumentation, as on average

48

5.2. Performance

Name Register savings No registers

gcc r 196.09% 259.64%
perlbench r 260.10% 453.71%
imagick r 71.17% 173.40%
nab r 27.21% 74.22%
xz r 144.76% 212.01%
mcf r 83.74% 124.92%
lbm r 97.31% 99.58%

Average 119.61% 195.79%

Table 5.4: Overhead of RetroWrite-ARM’s memory sanitization with register savings turned on
or off. On average, the register savings optimization produces code with 48.1% less overhead.

the overhead is reduced by 48.1%.

5.2.4 Comparison to trampolines

Trampolines are one of the most straight-forward way to instrument a bi-

nary, and they are are free from the burden of static analysis required to

perform symbolization. However, we would like to show that the tradeoff

in performance is very large compared to the in-place instrumentation that

symbolization permits to do.

We implemented the same memory sanitization instrumentation pass by

using trampolines, and ran the same benchmarks to compare the timings.

Results can be seen in Table 5.5.

This was a fairly simple experiment that used only a single type of very

heavy instrumentation (memory sanitization adds a lot of branches in the

code and a very large number of instructions need to be instrumented), but

the difference in overhead is very large, with trampolines being 56% slower

on average compared to symbolized in-place instrumentation. We expect

lower differences in overhead when using lighter forms of instrumentation,

but not lower enough to avoid being noticeable.

49

5.3. Correctness

Name Binary ASAN Trampoline ASAN

perlbench r 260.10% 636.41%
imagick r 71.17% 188.96%
nab r 27.21% 77.82%
xz r 144.76% 232.64%
mcf r 83.74% 135.31%
lbm r 97.31% 104.79%

Average 109.73% 227.38%

Table 5.5: Overhead of RetroWrite-ARM’s in-place instrumentation and trampoline-based in-
strumentation using memory sanitization as the instrumentation pass. On average, trampolines
are 56% slower than in-place instrumentation.

5.3 Correctness

While the SPEC CPU benchmark checks the validity of the output of each

benchmark that is run, we decided that we wanted further proof of the

correctness of our approach with more widely used and common binaries.

For this reason, we selected the coreutils suite of tools, and ran their tests on

the binaries rewritten with RetroWrite-ARM.

We used the release 8.32 package downloaded from https://ftp.gnu.org/

gnu/coreutils/. We first built the binaries using make, then rewrote every

single one of them two times: first, without instrumentation, and then with

memory sanitization enabled. We then ran the extensive version of their

testsuite with make check-very-expensive.

The results of the tests can be seen in Table 5.6. Of the 4 failed tests with

memory sanitization turned on, two of them are caused by the testsuite try-

ing to LD PRELOAD libraries (which is not compatible with AddressSanitizer)

in the stdbuf tests, and the other two are because of the overhead of the

instrumentation that triggers a timeout in the tests.

50

https://ftp.gnu.org/gnu/coreutils/
https://ftp.gnu.org/gnu/coreutils/

5.4. Comparison to Egalito

Symbolization only Binary ASAN

Total 621 621
Passed 540 536
Skipped 81 81
Failed 0 4

Table 5.6: Results of the coreutils “very expensive” test suite on binaries rewritten through
RetroWrite-ARM, comparing memory sanitization enabled or disabled. The skipped tests are
due to uninstalled third-party dependencies, or architecture specific features missing on the
Raspberry.

5.4 Comparison to Egalito

The only state-of-the-art static binary rewriter that had similar features com-

pared to RetroWrite-ARM is Egalito [34]. Egalito is a binary “recompiler”

targeting compiled C code as position-independent ARM64 Linux executa-

bles that lifts binary to a custom Intermediate Representation (IR) and sup-

ports a large variety of instrumentation and transformation passes, and has

a (reported) similar baseline overhead to RetroWrite-ARM (0.46% on SPEC

CPU2006). The comparison with Egalito is interesting because the authors

had to tackle very similar problems as ours (pointer construction and jump

table recovery); however, they do not specify how they solved the problem

of jump table enlargement in the case of heavyweight instrumentation. Un-

fortunately, we could not perform any kind of comparison as the version

available in the public repository crashes on any aarch64 binary we tried to

rewrite. We opened an issue 1 on their public Github repository on Novem-

ber 28, 2020, but it still left unanswered (as of April 19, 2021).

1https://github.com/columbia/egalito/issues/32

51

https://github.com/columbia/egalito/issues/32

Chapter 6

Related Work

6.1 Dynamic binary rewriting

While dynamic rewriters are scalable and do not suffer from the limita-

tions of static analysis, they incur large overheads for translation and exe-

cution and are not suited for high performance instrumentation. They can

either make use of the operating systems’ debugging primitives (ptrace API

in Linux, or the application debugging API in Windows), or of a custom

loader, like PIN [21] or DynamorIO, to modify and instrument the target bi-

nary at runtime. While they have to solve similar problems compared to

static rewriting (such as disassembly and CFG recovery), they can leverage

run-time information that is unavailable to static rewriters. For example, a

dynamic rewriter knows the target of an indirect branch before executing it,

since the register values are known at any given point during the execution.

Dynamic rewriters can also be built on top of emulation frameworks, which

is the case for QASAN [14] which uses QEMU to implement AddressSanitizer

memory sanitization on any binary supported by QEMU.

52

6.2. Static binary rewriting

6.2 Static binary rewriting

We will divide static rewriters by the technique they use to insert instrumen-

tation in the target binary, namely trampolines, lifting to an intermediate

representation, and symbolization.

6.2.1 Static rewriters that use trampolines

E9patch [12] is a recent static rewriter for x86 64 Linux ELF binaries, that

inserts instrumentation with trampolines. This techniques works by sub-

stituting the instruction that need to be instrumented by a non-conditional

jump that points to the instrumentation. At the end of the instrumentation,

another non-conditional jump brings the execution back to next instruction

of the original code. E9Patch introduces novel techniques to solve the prob-

lem of substituting an instruction in a varying-length ISA (such as x86 64).

Using trampolines has the advantage of requiring very low static analysis

beforehand; however, a large overhead is introduced at each instrumentation

location, as two jumps need to be executed each time.

BISTRO [9] is aimed at the rewriting of individual components in an ex-

ecutable, and works by stretching the binary to make space for the new

instrumentation; however it still makes use of trampolines (“anchors”) to

avoid breaking indirect call targets.

6.2.2 Static rewriters that lift to IR / full translation

Lifting the target binary to an intermediate representation has multiple ad-

vantages. First, if the chosen IR is a standardized one (such as the LLVM

IR), a wide variety of tools can be used to apply instrumentation and modify

the lifted IR. McSema [10] is a great example of an LLVM IR lifting approach

that supports x86 64 ELF and PE binaries, with support for C++ exceptions

and aarch64 support in development. The IR produced by McSema can be

53

6.3. Static rewriters aimed at ARM binaries

readily fuzzed with libFuzzer, an LLVM-based instrumented fuzzer that

would normally require the source code. The disadvantages in lifting to an

IR are in the fact that the lifting requires very heavy static analysis (in fact,

McSema uses IDAPro as backend) and some overhead can be introduced by

unoptimal lifting of the original binary.

6.2.3 Static rewriters that use symbolization

In 2015, Uroboros [32] was the first approach in generating reassemblable

assembly from x86 binaries. Unfortunately, it still suffered from classic chal-

lenges in static analysis such as relying on heuristics to differentiate between

scalars and references. Two years later Ramblr [31] significantly improved

on Uroboros’ approach with better heuristics and less overhead. In 2020,

RetroWrite-x64 restricted the class of target binaries to position-independent

ones, finally solving the problem of distinction between scalars and refer-

ences.

6.3 Static rewriters aimed at ARM binaries

In this section we will focus on static rewriters on the ARM architecture, which

have to tackle the same challenges caused by fixed-size instructions as we

did.

Repica [15] is one of the most recent static rewriters for both 32-bit and 64-bit

ARM binaries, and uses an instrumentation technique similar to reassembly:

instrumentation can be inserted both before and after an instruction, and

relative jumps are carefully adjusted to keep control flow and references

exact. The authors use a backwards-slicing technique to detect jump tables

similar as ours, and recover pointer construction mechanisms with data-flow

propagation. Their instrumentation however does not utilize optimizations

such as register savings, incurring in higher overhead than necessary.

54

6.4. Summary of related work

Egalito [34] is a binary “recompiler” targeted at C, position-independent

ELF binaries with support for both 32-bit and 64-bit x86 and ARM. Egalito

lifts binaries to a custom IR to insert instrumentation, supports a large vari-

ety of instrumentation and transformation passes, and has a reported similar

baseline overhead to RetroWrite-ARM (0.46% on SPEC CPU2006). Detection

of jump tables is done through backwards-slicing; the authors do not specify

how they solved pointer construction recovery.

Nor egalito neither repica address the problem of jump table enlargement,

fundamental in the case of heavy-weight instrumentation like memory sani-

tization. Even though it is older, RevARM [17] is the only one that supports re-

sizing jump tables to insert large instrumentation; however RevARM stretches

the jump table to make space for larger offsets, instead of multiplying the

already existings offsets and keeping the jump table of the same size as we

do. Also, RevARM only supports 32 bit ARM binaries.

To the best of our knowledge, no other static rewriter for aarch64 that ef-

ficiently supports heavy-weight instrumentation such as AddressSanitizer

has been proposed, other than the one proposed in this study.

6.4 Summary of related work

We present a short summary of binary rewriters in Table 6.1 for quick com-

parison. Please note that this table is vastly incomplete and that the rewrit-

ers listed in this table were hand-picked by us because were relevant to our

work or because were directly referenced previously. For a more detailed

summary, we redirect the reader to the survey by Wenzl et al. [33].

55

6.4. Summary of related work

Name Year Architectures Type Technique Features/Limitations

Bistro 2013 x86(32) static stretching ASLR support
Closed-source dependency (IDAPro)

McSema 2014 x86(32,64) static LLVM IR C++ exceptions support.
Closed-source dependency (IDAPro)

Uroboros 2015 x86(32,64) static symbolization First symbolization approach

Ramblr 2017 x86(32,64) static symbolization Like Uroboros, but more reliable.

RevARM 2017 ARM(32) static stretching
First static rewriter for ARM
Enlarged jmptbl support
Closed-source dependency (IDAPro)

Repica 2018 ARM(32, 64) static stretching Safe scalar/reference distinction

Egalito 2020 x86(64), ARM(64) static custom IR
Safe scalar/reference distinction
Many instr passes supported
Kernel support (?)

E9Patch 2020 x86(64) static trampolines No CFG recovery needed
High overhead due to trampolines

RetroWrite 2021 x86(64), ARM(64) static symbolization
Safe scalar/reference distinction
Enlarged jmptbl support
Memory sanitization support

Valgrind 2002 x86(32,64), ARM(32,64) dynamic custom IR Many instr passes supported

AFL-QEMU 2013 x86(32,64), ARM(32,64) dynamic emulation Big range of supported archs

QASAN 2020 x86(32,64), ARM(32,64) dynamic emulation Big range of supported archs
Memory sanitization support

DynamorIO 2002 x86(32,64), ARM(32) dynamic virtualization Many instr passes supported

PIN 2005 x86(32,64) dynamic JIT-recompilation Low dynamic overhead (30%)
Closed-source, Intel proprietary

Table 6.1: Summary of some of the state-of-the-art binary rewriting projects.

56

Chapter 7

Future Work

Support for more source languages: For now, RetroWrite-ARM supports

only binaries compiled from the C language, both for the x86 and the

ARM implementation. The easiest addition would be to add support for

C++ by expanding the analysis capabilities of RetroWrite-ARM to sup-

port exception tables too, but many more languages could be supported

in the future.

Support for kernel space binaries: Right now the ARM port of RetroWrite-

ARM supports only userspace binaries, contrary to the x86 version that

supports linux kernel modules too. The kernel version of RetroWrite-

ARM would prove to be particularly interesting as it would open new

ways to efficiently fuzz Android kernel modules.

Support for more executable formats/operating systems: The current im-

plementation of the RetroWrite-ARM tool is aimed only towards ELF

files, but adding support for MACH-O and PE binaries should not re-

quire too much effort. This would also be interesting as Windows and

MacOS present way more closed-source modules compared to Linux.

More instrumentation passes: While right now we implemented only the

AddressSanitizer instrumentation in the ARM port of RetroWrite-ARM,

the design of RetroWrite-ARM is modular and adding new instrumen-

57

tation passes or new mitigations should be easy. To name a few, the

interesting ones would be:

• Shadow stack (return address protection)

• Control flow authentication using ARM pointer authentication (hardware-

assisted)

• Coverage-guidance for fuzzing

58

Chapter 8

Conclusion

In summary, we present new solutions to binary rewriting problems arising

from the peculiarities of the ARM architecture such global variable symbol-

ization and jump table enlargement, and develop aarch64 support for the

RetroWrite project, a scalable static rewriter for linux C binaries. RetroWrite-

ARM enables targeted application of static instrumentation passes where

no source code is available, such as proprietary binaries, inline assembly, or

code generated by a deprecated compiler. We also present an example mem-

ory sanitization instrumentation pass, AddressSanitizer, particularly useful

for fuzzing purposes. To the best of our knowledge, RetroWrite-ARM is the

only aarch64 rewriter that supports heavy instrumentation passes like Ad-

dressSanitizer. We show that the total overhead of the memory sanitization

instrumentation pass are competitive with the source-based AddressSani-

tizer. Our work shows that the symbolization approach is not limited to the

x86 architecture, but can be applied to the aarch64 architecture and more.

59

Bibliography

[1] Android operating system share worldwide. https://www.statista.com/

statistics/271774/share- of- android- platforms- on- mobile-

devices-with-android-os/. Accessed: 2020-11-22.

[2] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. “Transparent

dynamic optimization: The design and implementation of Dynamo”.

In: (1999).

[3] Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In:

USENIX Annual Technical Conference, FREENIX Track. Vol. 41. 2005,

p. 46.

[4] Bryan Buck and Jeffrey K. Hollingsworth. “An API for Runtime Code

Patching”. In: The International Journal of High Performance Computing

Applications 14.4 (2000), pp. 317–329. doi: 10.1177/109434200001400404.

[5] Capstone: The Ultimate Disassembler. http://www.capstone\protect\

discretionary{\char\hyphenchar\font}{}{}engine.org. Accessed:

2020-11-02.

[6] CloudLab project. https://www.cloudlab.us/. Accessed: 2020-11-22.

[7] Cortex A72 Software Optimization Guide. https://developer.arm.com/

documentation/uan0016/a/. Accessed: 2020-11-11.

60

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://doi.org/10.1177/109434200001400404
http://www.capstone\protect \discretionary {\char \hyphenchar \font }{}{}engine.org
http://www.capstone\protect \discretionary {\char \hyphenchar \font }{}{}engine.org
https://www.cloudlab.us/
https://developer.arm.com/documentation/uan0016/a/
https://developer.arm.com/documentation/uan0016/a/

Bibliography

[8] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,

Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather

Hinton. “Stackguard: Automatic adaptive detection and prevention of

buffer-overflow attacks.” In: USENIX security symposium. Vol. 98. San

Antonio, TX. 1998, pp. 63–78.

[9] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. “Bistro: Binary compo-

nent extraction and embedding for software security applications”. In:

European Symposium on Research in Computer Security. Springer. 2013,

pp. 200–218.

[10] Artem Dinaburg and Andrew Ruef. “Mcsema: Static translation of x86

instructions to llvm”. In: ReCon 2014 Conference, Montreal, Canada. 2014.

[11] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.

“RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and

Sanitization”. In: IEEE International Symposium on Security and Privacy.

2020.

[12] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. “Binary rewrit-

ing without control flow recovery.” In: PLDI. 2020, pp. 151–163.

[13] Dynamic instrumentation toolkit for developers, reverse-engineers, and secu-

rity researchers. https://frida.re. Accessed: 2021-1-6.

[14] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni. “Fuzzing

binaries for memory safety errors with QASan”. In: 2020 IEEE Secure

Development (SecDev). IEEE. 2020, pp. 23–30.

[15] Dongsoo Ha, Wenhui Jin, and Heekuck Oh. “REPICA: Rewriting Posi-

tion Independent Code of ARM”. In: IEEE Access 6 (2018), pp. 50488–

50509. doi: 10.1109/access.2018.2868411.

[16] Kernel Module Support. https : / / source . android . com / devices /

architecture/kernel/kernel-module-support. Accessed: 2020-11-

16.

61

https://frida.re
https://doi.org/10.1109/access.2018.2868411
https://source.android.com/devices/architecture/kernel/kernel-module-support
https://source.android.com/devices/architecture/kernel/kernel-module-support

Bibliography

[17] Taegyu Kim, Chung Hwan Kim, Hongjun Choi, Yonghwi Kwon, Bren-

dan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. “RevARM: A

platform-agnostic ARM binary rewriter for security applications”. In:

Proceedings of the 33rd Annual Computer Security Applications Conference.

2017, pp. 412–424.

[18] Literal pools - ARM compiler user guide. https://developer.arm.com/

documentation/dui0473/m/dom1359731147760. Accessed: 2020-11-22.

[19] Literal pools - ARM compiler user guide. https : / / www . spec . org /

cpu2017/. Accessed: 2020-11-22.

[20] Literal Pools - The ARM documentation. https : / / developer . arm .

com/documentation/dui0473/m/writing-arm-assembly-language/

literal-pools. Accessed: 2020-11-11.

[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

wood. “Pin: building customized program analysis tools with dy-

namic instrumentation”. In: Acm sigplan notices 40.6 (2005), pp. 190–

200.

[22] Barton P Miller. “Binary Code Patching: An Ancient Art Refined for

the 21st Century”. In: NC State University Computer Science Department

Seminars 2006–2007. 2006.

[23] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for

heavyweight dynamic binary instrumentation”. In: ACM Sigplan no-

tices 42.6 (2007), pp. 89–100.

[24] PinePhone, “An Open Source Smart Phone Supported by All Major Linux

Phone Projects”. https://www.pine64.org/pinephone/. Accessed:

2021-1-10.

[25] Purism Products Homepage. https://puri.sm/products/. Accessed:

2021-1-10.

62

https://developer.arm.com/documentation/dui0473/m/dom1359731147760
https://developer.arm.com/documentation/dui0473/m/dom1359731147760
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://developer.arm.com/documentation/dui0473/m/writing-arm-assembly-language/literal-pools
https://developer.arm.com/documentation/dui0473/m/writing-arm-assembly-language/literal-pools
https://developer.arm.com/documentation/dui0473/m/writing-arm-assembly-language/literal-pools
https://www.pine64.org/pinephone/
https://puri.sm/products/

Bibliography

[26] Kevin Scott, Naveen Kumar, Siva Velusamy, Bruce Childers, Jack W

Davidson, and Mary Lou Soffa. “Retargetable and reconfigurable soft-

ware dynamic translation”. In: International Symposium on Code Gener-

ation and Optimization, 2003. CGO 2003. IEEE. 2003, pp. 36–47.

[27] Konstantin Serebryany. Hardware Memory Tagging to make C C++ mem-

ory safe. https://github.com/google/sanitizers/blob/master/

hwaddress-sanitizer/Hardware%20Memory%20Tagging%20to%20make%

20C_C++%20memory%20safe(r)%20- %20iSecCon%202018.pdf. Ac-

cessed: 2020-11-03.

[28] SPEC CPU 2017 Compilation flags. https://www.spec.org/cpu2017/

flags / gcc . 2018 - 02 - 16 . html # user _ F - fno - strict - aliasing.

Accessed: 2020-11-22.

[29] Robert Swiecki. “Honggfuzz: A general-purpose, easy-to-use fuzzer

with interesting analysis options”. In: URl: https://github. com/google/hong-

gfuzz (visited on 06/21/2017) (2017).

[30] System76 Homepage. https://system76.com/. Accessed: 2021-1-10.

[31] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,

John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna.

“Ramblr: Making Reassembly Great Again.” In: NDSS. 2017.

[32] Shuai Wang, Pei Wang, and Dinghao Wu. “Reassembleable disassem-

bling”. In: 24th {USENIX} Security Symposium ({USENIX} Security 15).

2015, pp. 627–642.

[33] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl.

“From hack to elaborate technique—a survey on binary rewriting”. In:

ACM Computing Surveys (CSUR) 52.3 (2019), pp. 1–37.

[34] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Gra-

ham Patterson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios

63

https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware%20Memory%20Tagging%20to%20make%20C_C++%20memory%20safe(r)%20-%20iSecCon%202018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware%20Memory%20Tagging%20to%20make%20C_C++%20memory%20safe(r)%20-%20iSecCon%202018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware%20Memory%20Tagging%20to%20make%20C_C++%20memory%20safe(r)%20-%20iSecCon%202018.pdf
https://www.spec.org/cpu2017/flags/gcc.2018-02-16.html#user_F-fno-strict-aliasing
https://www.spec.org/cpu2017/flags/gcc.2018-02-16.html#user_F-fno-strict-aliasing
https://system76.com/

Bibliography

P Kemerlis. “Egalito: Layout-Agnostic Binary Recompilation”. In: Pro-

ceedings of the Twenty-Fifth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems. 2020, pp. 133–

147.

[35] M. Zalewski. American Fuzzy Lop. http://lcamtuf.coredump.cx/

afl/. Accessed: 2020-11-03.

64

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Contents
	Introduction
	Background
	Binary Rewriting
	Binary rewriting in short
	Applications of binary rewriting

	Dynamic and Static Instrumentation
	Dynamic instrumentation
	Static instrumentation

	Symbolization
	Examples of code instrumentation
	Fuzzing
	ASan

	The ARM architecture

	Design
	Goals
	System architecture
	Differences with RetroWrite-x64

	Key Issues
	Pointer construction
	Jump table target recovery
	Enlarging jump tables
	Control Flow broken by instrumentation
	Instrumentation register saving

	Implementation
	Symbolizer
	Detecting pointer constructions
	Symbolization of pointers

	Jump Tables
	Detection of jump tables
	Jump Table symbolization
	Jump Table enlargement

	Instrumentation (BASan)

	Evaluation
	Setup and Hardware
	Performance
	Symbolization performance
	Memory sanitization performance
	Optimization: register savings
	Comparison to trampolines

	Correctness
	Comparison to Egalito

	Related Work
	Dynamic binary rewriting
	Static binary rewriting
	Static rewriters that use trampolines
	Static rewriters that lift to IR / full translation
	Static rewriters that use symbolization

	Static rewriters aimed at ARM binaries
	Summary of related work

	Future Work
	Conclusion
	Bibliography

